Null boundary terms for Lanczos–Lovelock gravity

  • Sumanta ChakrabortyEmail author
  • Krishnamohan Parattu
Editor’s Choice (Research Article)


We derive boundary terms appropriate for the general Lanczos–Lovelock action on a null boundary, when Dirichlet boundary conditions are imposed. We believe that these boundary terms have been derived for the first time in the literature. In this derivation, we rely only on the structure of the boundary variation of the action for Lanczos–Lovelock gravity. We also provide the null boundary term for Gauss–Bonnet gravity separately.


Null surface Boundary terms Lanczos–Lovelock gravity 



Research of SC is funded by the INSPIRE Faculty Fellowship (Reg. No. DST/INSPIRE/04/2018/000893) from Department of Science and Technology, Government of India. Research of KP has been supported by the SERB-NPDF grant (No. PDF/2017/002782) from DST, Government of India; the DGAPA postdoctoral fellowship from UNAM, Mexico and the Fondecyt Postdoctoral fellowship (No. 3180421) from the Government of Chile. KP would like to thank Perimeter Institute for kind hospitality during a stay, discussions in which duration led to this project. SC thanks IIT Gandhinagar and Albert Einstein Institute, Golm, where parts of this work were done, for warm hospitality. SC and KP would like to thank T. Padmanabhan, K. Lochan, Dean Carmi and Pratik Rath for useful discussions. We would also like to thank the referee for his/her comments which have helped to improve the manuscript.


  1. 1.
    Einstein, A.: Hamilton’s principle and the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.Phys.) 1916, 1111–1116 (1916)Google Scholar
  2. 2.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 [gr-qc]CrossRefGoogle Scholar
  3. 3.
    Hawking, S.W.: The path integral approach to quantum gravity. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 746–789. University Press, Cambridge (1979)Google Scholar
  4. 4.
    Dyer, E., Hinterbichler, K.: Boundary terms, variational principles and higher derivative modified gravity. Phys. Rev. D 79, 024028 (2009). arXiv:0809.4033 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Gibbons, G., Hawking, S.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    York, J., James, W.: Role of conformal three geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    Katz, J.: A note on Komar’s anomalous factor. Class. Quantum Gravity 2(3), 423 (1985)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Katz, J., Lerer, D.: On global conservation laws at null infinity. Class. Quantum Gravity 14, 2249–2266 (1997). arXiv:gr-qc/9612025 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Barth, N.H.: Second and Fourth Order Gravitational Actions on Manifolds with Boundaries. Ph.D. thesis, The University of North Carolina at Chapel Hill (1983)Google Scholar
  11. 11.
    Neiman, Y.: On-shell actions with lightlike boundary data. arXiv:1212.2922 [hep-th]
  12. 12.
    Parattu, K., Chakraborty, S., Majhi, B.R., Padmanabhan, T.: A boundary term for the gravitational action with null boundaries. Gen. Relativ. Gravit. 48(7), 94 (2016). arXiv:1501.01053 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Parattu, K., Chakraborty, S., Padmanabhan, T.: Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term. Eur. Phys. J. C 76(3), 129 (2016). arXiv:1602.07546 [gr-qc]ADSCrossRefGoogle Scholar
  14. 14.
    Chakraborty, S.: Boundary terms of the Einstein–Hilbert action. Fundam. Theor. Phys. 187, 43–59 (2017). arXiv:1607.05986 [gr-qc]MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Gravitational action with null boundaries. Phys. Rev. D 94(8), 084046 (2016). arXiv:1609.00207 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hopfmller, F., Freidel, L.: Gravity degrees of freedom on a null surface. Phys. Rev. D 95(10), 104006 (2017). arXiv:1611.03096 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Jubb, I., Samuel, J., Sorkin, R., Surya, S.: Boundary and corner terms in the action for general relativity. Class. Quantum Gravity 34(6), 065006 (2017). arXiv:1612.00149 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Aghapour, S., Jafari, G., Golshani, M.: On variational principle and canonical structure of gravitational theory in double-foliation formalism. arXiv:1808.07352 [gr-qc]
  19. 19.
    Hartle, J.B., Sorkin, R.: Boundary terms in the action for the regge calculus. Gen. Relativ. Gravit. 13, 541–549 (1981)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Farhi, E., Guth, A.H., Guven, J.: Is it possible to create a universe in the laboratory by quantum tunneling? Nucl. Phys. B 339, 417–490 (1990)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Brill, D.: Splitting of an extremal Reissner–Nordstrom throat via quantum tunneling. Phys. Rev. D 46, 1560–1565 (1992). arXiv:hep-th/9202037 [hep-th]ADSCrossRefGoogle Scholar
  22. 22.
    Hayward, G.: Gravitational action for space–times with nonsmooth boundaries. Phys. Rev. D 47, 3275–3280 (1993)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Brill, D., Hayward, G.: Is the gravitational action additive? Phys. Rev. D 50, 4914–4919 (1994). arXiv:gr-qc/9403018 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Reynolds, A., Ross, S.F.: Complexity in de sitter space. Class. Quantum Gravity 34(17), 175013 (2017). arXiv:1706.03788 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang, R.-Q., Niu, C., Kim, K.-Y.: Surface counterterms and regularized holographic complexity. JHEP 09, 042 (2017). arXiv:1701.03706 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Reynolds, A., Ross, S.F.: Divergences in holographic complexity. Class. Quantum Gravity 34(10), 105004 (2017). arXiv:1612.05439 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Carmi, D., Myers, R.C., Rath, P.: Comments on holographic complexity. JHEP 03, 118 (2017). arXiv:1612.00433 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chapman, S., Marrochio, H., Myers, R.C.: Complexity of formation in holography. JHEP 01, 062 (2017). arXiv:1610.08063 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Yang, R.-Q.: Strong energy condition and complexity growth bound in holography. Phys. Rev. D 95(8), 086017 (2017). arXiv:1610.05090 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ben-Ami, O., Carmi, D.: On volumes of subregions in holography and complexity. JHEP 11, 129 (2016). arXiv:1609.02514 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Fareghbal, R., Karimi, P.: Complexity growth in flat spacetimes. Phys. Rev. D 98(4), 046003 (2018). arXiv:1806.07273 [hep-th]ADSCrossRefGoogle Scholar
  32. 32.
    Auzzi, R., Baiguera, S., Grassi, M., Nardelli, G., Zenoni, N.: Complexity and action for warped AdS black holes. JHEP 09, 013 (2018). arXiv:1806.06216 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Alishahiha, M., Faraji Astaneh, A., Mohammadi Mozaffar, M.R., Mollabashi, A.: Complexity growth with Lifshitz scaling and hyperscaling violation. JHEP 07, 042 (2018). arXiv:1802.06740 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Bolognesi, S., Rabinovici, E., Roy, S.R.: On some universal features of the holographic quantum complexity of bulk singularities. JHEP 06, 016 (2018). arXiv:1802.02045 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Reynolds, A.P., Ross, S.F.: Complexity of the AdS soliton. Class. Quantum Gravity 35(9), 095006 (2018). arXiv:1712.03732 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang, R.-Q., Niu, C., Zhang, C.-Y., Kim, K.-Y.: Comparison of holographic and field theoretic complexities for time dependent thermofield double states. JHEP 02, 082 (2018). arXiv:1710.00600 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Carmi, D., Chapman, S., Marrochio, H., Myers, R.C., Sugishita, S.: On the time dependence of holographic complexity. JHEP 11, 188 (2017). arXiv:1709.10184 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, R.-Q.: Complexity for quantum field theory states and applications to thermofield double states. Phys. Rev. D 97(6), 066004 (2018). arXiv:1709.00921 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Holographic complexity equals bulk action? Phys. Rev. Lett. 116(19), 191301 (2016). arXiv:1509.07876 [hep-th]ADSCrossRefGoogle Scholar
  40. 40.
    Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Complexity, action, and black holes. Phys. Rev. D 93(8), 086006 (2016). arXiv:1512.04993 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Eling, C.: Spontaneously broken asymptotic symmetries and an effective action for horizon dynamics. JHEP 02, 052 (2017). arXiv:1611.10214 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Maltz, J.: de Sitter harmonies: cosmological spacetimes as resonances. Phys. Rev. D 95(6), 066006 (2017). arXiv:1611.03491 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Maltz, J., Susskind, L.: de Sitter space as a resonance. Phys. Rev. Lett. 118(10), 101602 (2017). arXiv:1611.00360 [hep-th]ADSCrossRefGoogle Scholar
  44. 44.
    Buck, M., Dowker, F., Jubb, I., Surya, S.: Boundary terms for causal sets. Class. Quantum Gravity 32(20), 205004 (2015). arXiv:1502.05388 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. 39, 842–850 (1938)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Dadhich, N.: Characterization of the Lovelock gravity by Bianchi derivative. Pramana 74, 875–882 (2010). arXiv:0802.3034 [gr-qc]ADSCrossRefGoogle Scholar
  48. 48.
    Padmanabhan, T., Kothawala, D.: Lanczos–Lovelock models of gravity. Phys. Rep. 531, 115–171 (2013). arXiv:1302.2151 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Deruelle, N., Madore, J.: On the quasilinearity of the Einstein–’Gauss–Bonnet’ gravity field equations. arXiv:gr-qc/0305004 [gr-qc]
  50. 50.
    Chakraborty, S.: Field equations for Lovelock gravity: an alternative route. Adv. High Energy Phys. 2018, 6509045 (2018). arXiv:1704.07366 [gr-qc]MathSciNetCrossRefGoogle Scholar
  51. 51.
    Bunch, T.: Surface terms in higher derivative gravity. J. Phys. A Math. Gen. 14(5), L139 (1981)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Myers, R.C.: Higher derivative gravity, surface terms and string theory. Phys. Rev. D 36, 392 (1987)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Davis, S.C.: Generalized Israel junction conditions for a Gauss–Bonnet brane world. Phys. Rev. D 67, 024030 (2003). arXiv:hep-th/0208205 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Yale, A.: Simple counterterms for asymptotically AdS spacetimes in Lovelock gravity. Phys. Rev. D 84, 104036 (2011). arXiv:1107.1250 [gr-qc]ADSCrossRefGoogle Scholar
  55. 55.
    Miskovic, O., Olea, R.: Counterterms in dimensionally continued AdS gravity. JHEP 10, 028 (2007). arXiv:0706.4460 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Deruelle, N., Merino, N., Olea, R.: Einstein–Gauss–Bonnet theory of gravity: the Gauss–Bonnet–Katz boundary term. Phys. Rev. D 97(10), 104009 (2018). arXiv:1709.06478 [gr-qc]ADSCrossRefGoogle Scholar
  57. 57.
    Deruelle, N., Merino, N., Olea, R.: Chern–Weil theorem, Lovelock Lagrangians in critical dimensions and boundary terms in gravity actions. arXiv:1803.04741 [gr-qc]
  58. 58.
    Chakraborty, S., Parattu, K., Padmanabhan, T.: A novel derivation of the boundary term for the action in Lanczos–Lovelock gravity. Gen. Relativ. Gravit. 49(9), 121 (2017). arXiv:1703.00624 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Cano, P.A.: Lovelock action with nonsmooth boundaries. Phys. Rev. D 97(10), 104048 (2018). arXiv:1803.00172 [gr-qc]ADSCrossRefGoogle Scholar
  60. 60.
    Padmanabhan, T.: A short note on the boundary term for the Hilbert action. Mod. Phys. Lett. A 29, 1450037 (2014)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principles. Dover Publications, Mineola (1989)zbMATHGoogle Scholar
  62. 62.
    Frankel, T.: The Geometry of Physics: An Introduction, 2nd edn. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  63. 63.
    Carter, B.: ch. 6: The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 294–369. Cambridge University Press, Cambridge (1979)Google Scholar
  64. 64.
    Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black–Hole Mechanics, 1st edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  65. 65.
    Chakraborty, S., Padmanabhan, T.: Thermodynamical interpretation of the geometrical variables associated with null surfaces. Phys. Rev. D 92(10), 104011 (2015). arXiv:1508.04060 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Hájíček, P.: Exact models of charged black holes. Commun. Math. Phys. 34(1), 53–76 (1973)ADSCrossRefGoogle Scholar
  67. 67.
    Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423, 159–294 (2006). arXiv:gr-qc/0503113 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    Corichi, A., Reyes, J.D., Vukainac, T.: Weakly isolated horizons: first order actions and gauge symmetries. Class. Quantum Gravity 34(8), 085005 (2017). arXiv:1612.01462 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Cano, P.A., Hennigar, R.A., Marrochio, H.: Complexity Growth Rate in Lovelock Gravity. arXiv:1803.02795 [hep-th]
  70. 70.
    Vega, I., Poisson, E., Massey, R.: Intrinsic and extrinsic geometries of a tidally deformed black hole. Class. Quantum Gravity 28, 175006 (2011). arXiv:1106.0510 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Yang, R.-Q., Ruan, S.-M.: Comments on joint terms in gravitational action. Class. Quantum Gravity 34(17), 175017 (2017). arXiv:1704.03232 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Gourgoulhon, E.: 3+1 Formalism in General Relativity: Bases of Numerical Relativity, vol. 846. Springer, Berlin (2012)zbMATHGoogle Scholar
  73. 73.
    Wald, R.M.: General Relativity, 1st edn. The University of Chicago Press, Chicago (1984)CrossRefGoogle Scholar
  74. 74.
    Moncrief, V., Isenberg, J.: Symmetries of cosmological cauchy horizons. Commun. Math. Phys. 89(3), 387–413 (1983). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Friedrich, H., Racz, I., Wald, R.M.: On the rigidity theorem for space–times with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691–707 (1999). arXiv:gr-qc/9811021 [gr-qc]ADSCrossRefGoogle Scholar
  76. 76.
    Racz, I.: Stationary black holes as holographs. Class. Quantum Gravity 24, 5541–5572 (2007). arXiv:gr-qc/0701104 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Morales, E.M.: On a Second Law of Black Hole Mechanics in a Higher Derivative Theory of Gravity, Master’s thesis, Institut für Theoretische Physik der Georg-August-Universität zu Göttingen (2008).
  78. 78.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical SciencesIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Instituto de FisicaPontificia Universidad Catolica de ValparaisoCuraumaChile

Personalised recommendations