# Gravitational lensing beyond geometric optics: I. Formalism and observables

## Abstract

The laws of geometric optics and their corrections are derived for scalar, electromagnetic, and gravitational waves propagating in generic curved spacetimes. Local peeling-type results are obtained, where different components of high-frequency fields are shown to scale with different powers of their frequencies. Additionally, finite-frequency corrections are identified for a number of conservation laws and observables. Among these observables are a field’s energy and momentum densities, as well as several candidates for its corrected “propagation directions”.

## Keywords

Wave propagation Gravitational lensing Gravitational waves Geometric optics## Notes

### Acknowledgements

I thank Yi-Zen Chu, Sam Dolan, and Justin Vines for valuable discussions.

## References

- 1.Schneider, P., Ehlers, J., Falco, E .E.: Gravitational Lenses. Springer, Berlin (1992)Google Scholar
- 2.Wambsganss, J.: Living Rev. Relativ.
**1**, 12 (1998)ADSCrossRefGoogle Scholar - 3.Perlick, V.: Living Rev. Relativ.
**7**, 9 (2004)ADSCrossRefGoogle Scholar - 4.Bartelmann, M.: Class. Quantum Gravity
**27**, 233001 (2010)ADSMathSciNetCrossRefGoogle Scholar - 5.Nye, J.: Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. IOP Publishing, Bristol (1999)zbMATHGoogle Scholar
- 6.Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
- 7.Thorne, K.S., Blandford, R.D.: Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton University Press, Princeton (2017)zbMATHGoogle Scholar
- 8.Goodman, J.J., Romani, R.W., Blandford, R.D., Narayan, R.: Mon. Not. R. Astron. Soc.
**229**, 73 (1987)ADSCrossRefGoogle Scholar - 9.Turyshev, S.G., Toth, V.T.: Phys. Rev. D
**96**, 024008 (2017)ADSMathSciNetCrossRefGoogle Scholar - 10.Ehlers, J.: Z. Naturforsch. A
**22**, 1328 (1967)ADSCrossRefGoogle Scholar - 11.Anile, A.M.: J. Math. Phys.
**17**, 576 (1976)ADSCrossRefGoogle Scholar - 12.Isaacson, R.A.: Phys. Rev.
**166**, 1263 (1968)ADSCrossRefGoogle Scholar - 13.Nakamura, T.T.: Phys. Rev. Lett.
**80**, 1138 (1998)ADSCrossRefGoogle Scholar - 14.Nakamura, T.T., Deguchi, S.: Prog. Theor. Phys. Suppl.
**133**, 137 (1999)ADSCrossRefGoogle Scholar - 15.Takahashi, R.: Astrophys. J.
**644**, 80 (2006)ADSCrossRefGoogle Scholar - 16.Rahvar, S.: Mon. Not. R. Astron. Soc.
**479**, 406 (2018)ADSCrossRefGoogle Scholar - 17.Wald, R .M.: General Relativity. University Of Chicago Press, Chicago (1984)CrossRefGoogle Scholar
- 18.Teitelboim, C., Villarroel, D., van Weert, C.G.: Riv. Nuovo Cim.
**3**, 1 (1980)CrossRefGoogle Scholar - 19.Hogan, P .A., Ellis, G .F .R.: Ann. Phys. (N.Y.)
**210**, 178 (1991)ADSCrossRefGoogle Scholar - 20.Nolan, B.C.: Proc. R. Irish Acad. A
**97**, 31 (1997)Google Scholar - 21.Günther, P.: Huygens’ Principle and Hyperbolic Equations. Academic Press, New York (1988)zbMATHGoogle Scholar
- 22.Belger, M., Schimming, R., Wünsch, V.: Z. Anal. Anwend.
**16**, 9 (1997)CrossRefGoogle Scholar - 23.Sommerfeld, A., Runge, J.: Ann. Phys. (Leipzig)
**340**, 277 (1911)ADSCrossRefGoogle Scholar - 24.Friedlander, F .G.: The Wave Equation on a Curved Space-Time. Cambridge University Press, Cambridge (2010)Google Scholar
- 25.Keller, J.B., Lewis, R.M.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. In: Keller, J.B., McLaughlin, D.W., Papanicolaou, G.C. (eds.) Surveys in Applied Mathematics, p. 1. Springer, Berlin (1995)CrossRefGoogle Scholar
- 26.Kline, M., Kay, I .W.: Electromagnetic Theory and Geometrical Optics. Interscience Publishers, Geneva (1965)zbMATHGoogle Scholar
- 27.Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)Google Scholar
- 28.Quinn, T.C.: Phys. Rev. D
**62**, 064029 (2000)ADSMathSciNetCrossRefGoogle Scholar - 29.Burko, L.M., Harte, A.I., Poisson, E.: Phys. Rev. D
**65**, 124006 (2002)ADSCrossRefGoogle Scholar - 30.Harte, A.I.: Motion in classical field theories and the foundations of the self-force problem. In: Puetzfeld, D.L., Lämmerzahl, C., Schutz, B. (eds.) Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics, vol. 179, p. 327. Springer, Berlin (2015)CrossRefGoogle Scholar
- 31.Flanagan, É.É., Wald, R.M.: Phys. Rev. D
**54**, 6233 (1996)ADSMathSciNetCrossRefGoogle Scholar - 32.Dolan, S.R.: arXiv:1801.02273
- 33.Mashhoon, B.: Phys. Lett. A
**122**, 299 (1987)ADSMathSciNetCrossRefGoogle Scholar - 34.Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C .L .U., Herlt, E.: Exact Solutions of Einstein’s field equations. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
- 35.Frolov, V.P.: The Newman–Penrose method in the theory of general relativity. In: Basov, N.G. (ed.) Problems in the General Theory of Relativity and Theory of Group Representations, p. 73. Springer, Berlin (1979)CrossRefGoogle Scholar
- 36.Penrose, R.: Proc. R. Soc. A
**284**, 159 (1965)ADSGoogle Scholar - 37.Hogan, P.A., Ellis, G.F.R.: J. Math. Phys.
**30**, 233 (1989)ADSMathSciNetCrossRefGoogle Scholar - 38.Frolov, V.P., Shoom, A.A.: Phys. Rev. D
**84**, 044026 (2011)ADSCrossRefGoogle Scholar - 39.Yoo, C.M.: Phys. Rev. D
**86**, 084005 (2012)ADSCrossRefGoogle Scholar - 40.Duval, C., Schücker, T.: Phys. Rev. D
**96**, 043517 (2017)ADSMathSciNetCrossRefGoogle Scholar - 41.Bailyn, M., Ragusa, S.: Phys. Rev. D
**15**, 3543 (1977)ADSCrossRefGoogle Scholar - 42.Bailyn, M., Ragusa, S.: Phys. Rev. D
**23**, 1258 (1981)ADSCrossRefGoogle Scholar - 43.Gosselin, P., Bérard, A., Mohrbach, H.: Phys. Rev. D
**75**, 084035 (2007)ADSCrossRefGoogle Scholar - 44.Duval, C., Horváth, Z., Horváthy, P.A.: Phys. Rev. D
**74**, 021701 (2006)ADSMathSciNetCrossRefGoogle Scholar - 45.Synge, J .L.: Relativity: The Special Theory. Interscience Publishers, Geneva (1956)zbMATHGoogle Scholar
- 46.Hall, G .S.: Symmetries and Curvature Structure in General Relativity. World Scientific, Singapore (2004)CrossRefGoogle Scholar
- 47.Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
- 48.Cherubini, C., Bini, D., Bruni, M., Perjes, Z.: Class. Quantum Grav.
**21**, 4833 (2004)ADSCrossRefGoogle Scholar - 49.Araneda, B., Dotti, G.: Class. Quantum Gravity
**32**, 195013 (2015)ADSCrossRefGoogle Scholar - 50.Robinson, I.: J. Math. Phys.
**2**, 290 (1961)ADSCrossRefGoogle Scholar - 51.Anco, S.C., Pohjanpelto, J.: Acta Appl. Math.
**69**, 285 (2001)MathSciNetCrossRefGoogle Scholar - 52.Bergqvist, G., Eriksson, I., Senovilla, J.M.M.: Class. Quantum Gravity
**20**, 2663 (2003)ADSCrossRefGoogle Scholar - 53.Andersson, L., Bäckdahl, T., Blue, P.: J. Diff. Geom.
**105**, 163 (2017)CrossRefGoogle Scholar - 54.Szekeres, P.: Ann. Phys. (N.Y.)
**64**, 599 (1971)ADSCrossRefGoogle Scholar - 55.Ehlers, J., Prasanna, A.R., Breuer, R.A.: Class. Quantum Gravity
**4**, 253 (1987)ADSCrossRefGoogle Scholar - 56.Ehlers, J., Prasanna, A.R.: Class. Quantum Gravity
**13**, 2231 (1996)ADSCrossRefGoogle Scholar - 57.Isaacson, R.A.: Phys. Rev.
**166**, 1272 (1968)ADSCrossRefGoogle Scholar - 58.Burnett, G.A.: J. Math. Phys.
**30**, 90 (1989)ADSMathSciNetCrossRefGoogle Scholar - 59.Senovilla, J.M.M.: Class. Quantum Gravity
**17**, 2799 (2000)ADSMathSciNetCrossRefGoogle Scholar - 60.Bonilla, M.Á.G., Senovilla, J.M.M.: Gen. Relativ. Gravit.
**29**, 91 (1997)ADSCrossRefGoogle Scholar - 61.Clifton, T., Ellis, G.F.R., Tavakol, R.: Class. Quantum Gravity
**30**, 125009 (2013)ADSCrossRefGoogle Scholar - 62.Goswami, R., Ellis, G.F.R.: Class. Quantum Gravity
**35**, 165007 (2018)ADSCrossRefGoogle Scholar - 63.Bern, Z., Dennen, T., tin Huang, Y., Kiermaier, M.: Phys. Rev. D
**82**, 065003 (2010)ADSCrossRefGoogle Scholar - 64.Bahjat-Abbas, N., Luna, A., White, C.D.: J. High Energy Phys.
**2017**, 4 (2017)CrossRefGoogle Scholar - 65.González, M.C., Penco, R., Trodden, M.: J. High Energ. Phys.
**2018**, 28 (2018)CrossRefGoogle Scholar - 66.Xanthopoulos, B.C.: J. Math. Phys.
**19**, 1607 (1978)ADSMathSciNetCrossRefGoogle Scholar - 67.Harte, A.I., Vines, J.: Phys. Rev. D
**94**, 084009 (2016)ADSMathSciNetCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019