Advertisement

Bubble networks: framed discrete geometry for quantum gravity

  • Laurent Freidel
  • Etera R. LivineEmail author
Research Article

Abstract

In the context of canonical quantum gravity in 3 \(+\) 1 dimensions, we introduce a new notion of bubble network that represents discrete 3d space geometries. These are natural extensions of twisted geometries, which represent the geometrical data underlying loop quantum geometry and are defined as networks of \(\mathrm {SU}(2)\) holonomies. In addition to the \(\mathrm {SU}(2)\) representations encoding the geometrical flux, the bubble network links carry a compatible \(\mathrm {SL}(2,{{\mathbb {R}}})\) representation encoding the discretized frame field which composes the flux. In contrast with twisted geometries, this extra data allows to reconstruct the frame compatible with the flux unambiguously. At the classical level this data represents a network of 3d geometrical cells glued together. The \(\mathrm {SL}(2,{{\mathbb {R}}})\) data contains information about the discretized 2d metrics of the interfaces between 3d cells and \(\mathrm {SL}(2,{{\mathbb {R}}})\) local transformations are understood as the group of area-preserving diffeomorphisms. We further show that the natural gluing condition with respect to this extended group structure ensures that the intrinsic 2d geometry of a boundary surface is the same from the viewpoint of the two cells sharing it. At the quantum level this gluing corresponds to a maximal entanglement along the network edges. We emphasize that the nature of this extension of twisted geometries is compatible with the general analysis of gauge theories that predicts edge mode degrees of freedom at the interface of subsystems.

Keywords

Loop quantum gravity Twisted geometry Spin network Discrete geometry Discrete gravity 

References

  1. 1.
    Freidel, L., Geiller, M., Ziprick, J.: Continuous formulation of the loop quantum gravity phase space. Class. Quantum Gravity 30, 085013 (2013). arXiv:1110.4833 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Freidel, L., Ziprick, J.: Spinning geometry = twisted geometry. Class. Quantum Gravity 31(4), 045007 (2014). arXiv:1308.0040 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Freidel, L., Perez, A.: Quantum gravity at the corner. arXiv:1507.02573
  4. 4.
    Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. JHEP 09, 102 (2016). arXiv:1601.04744 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Rovelli, C.: Why gauge? Found. Phys. 44(1), 91–104 (2014). arXiv:1308.5599 ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Freidel, L., Speziale, S.: Twisted geometries: a geometric parametrisation of SU(2) phase space. Phys. Rev. D 82, 084040 (2010). arXiv:1001.2748 ADSCrossRefGoogle Scholar
  7. 7.
    Girelli, F., Sellaroli, G.: SO*(2N) coherent states for loop quantum gravity. J. Math. Phys. 58(7), 071708 (2017). arXiv:1701.07519 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Freidel, L., Livine, E.R.: U(N) coherent states for loop quantum gravity. J. Math. Phys. 52, 052502 (2011). arXiv:1005.2090 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Livine, E.R., Tambornino, J.: Spinor representation for loop quantum gravity. J. Math. Phys. 53, 012503 (2012). arXiv:1105.3385 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Livine, E.R., Tambornino, J.: Loop gravity in terms of spinors. J. Phys. Conf. Ser. 360, 012023 (2012). arXiv:1109.3572 zbMATHCrossRefGoogle Scholar
  11. 11.
    Freidel, L., Speziale, S.: From twistors to twisted geometries. Phys. Rev. D 82, 084041 (2010). arXiv:1006.0199 ADSCrossRefGoogle Scholar
  12. 12.
    Dittrich, B., Ryan, J.P.: Phase space descriptions for simplicial 4d geometries. Class. Quantum Gravity 28, 065006 (2011). arXiv:0807.2806 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dittrich, B., Speziale, S.: Area-angle variables for general relativity. New J. Phys. 10, 083006 (2008). arXiv:0802.0864 ADSCrossRefGoogle Scholar
  14. 14.
    Dupuis, M., Ryan, J.P., Speziale, S.: Discrete gravity models and loop quantum gravity: a short review. SIGMA 8, 052 (2012). arXiv:1204.5394 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Speziale, S., Wieland, W.M.: The twistorial structure of loop-gravity transition amplitudes. Phys. Rev. D 86, 124023 (2012). arXiv:1207.6348 ADSCrossRefGoogle Scholar
  16. 16.
    Haggard, H.M., Rovelli, C., Wieland, W., Vidotto, F.: Spin connection of twisted geometry. Phys. Rev. D 87(2), 024038 (2013). arXiv:1211.2166 ADSCrossRefGoogle Scholar
  17. 17.
    Bianchi, E., Dona, P., Speziale, S.: Polyhedra in loop quantum gravity. Phys. Rev. D 83, 044035 (2011). arXiv:1009.3402 ADSCrossRefGoogle Scholar
  18. 18.
    Livine, E.R.: Deformations of polyhedra and polygons by the unitary group. J. Math. Phys. 54, 123504 (2013). arXiv:1307.2719 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Barbieri, A.: Quantum tetrahedra and simplicial spin networks. Nucl. Phys. B 518, 714–728 (1998). arXiv:gr-qc/9707010 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Baez, J.C., Barrett, J.W.: The Quantum tetrahedron in three-dimensions and four-dimensions. Adv. Theor. Math. Phys. 3, 815–850 (1999). arXiv:gr-qc/9903060 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Livine, E.R.: Deformation operators of spin networks and coarse-graining. Class. Quantum Gravity 31, 075004 (2014). arXiv:1310.3362 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quantum Gravity 32(11), 112001 (2015). arXiv:1401.6441 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dittrich, B., Geiller, M.: Flux formulation of loop quantum gravity: classical framework. Class. Quantum Gravity 32(13), 135016 (2015). arXiv:1412.3752 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Charles, C., Livine, E.R.: The fock space of loopy spin networks for quantum gravity. Gen. Relativ. Gravit. 48(8), 113 (2016). arXiv:1603.01117 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Charles, C., Livine, E.R.: The closure constraint for the hyperbolic tetrahedron as a Bianchi identity. Gen. Relativ. Gravit. 49(7), 92 (2017). arXiv:1607.08359 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Freidel, L., Perez, A., Pranzetti, D.: Loop gravity string. Phys. Rev. D 95(10), 106002 (2017). arXiv:1611.03668 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Borja, E.F., Freidel, L., Garay, I., Livine, E.R.: U(N) tools for loop quantum gravity: the return of the spinor. Class. Quantum Gravity 28, 055005 (2011). arXiv:1010.5451 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Dupuis, M., Speziale, S., Tambornino, J.: Spinors and twistors in loop gravity and spin foams. PoS QGQGS2011, 021 (2011). arXiv:1201.2120 Google Scholar
  29. 29.
    Dupuis, M., Livine, E.R.: Holomorphic simplicity constraints for 4d spinfoam models. Class. Quantum Gravity 28, 215022 (2011). arXiv:1104.3683 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Bonzom, V., Livine, E.R.: Generating functions for coherent intertwiners. Class. Quantum Gravity 30, 055018 (2013). arXiv:1205.5677 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Freidel, L., Hnybida, J.: On the exact evaluation of spin networks. J. Math. Phys. 54, 112301 (2013). arXiv:1201.3613 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Bonzom, V., Costantino, F., Livine, E.R.: Duality between spin networks and the 2D Ising model. Commun. Math. Phys. 344(2), 531–579 (2016). arXiv:1504.02822 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Freidel, L., Girelli, F., Livine, E.R.: The relativistic particle: Dirac observables and Feynman propagator. Phys. Rev. D 75, 105016 (2007). arXiv:hep-th/0701113 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Dittrich, B., Ryan, J.P.: Simplicity in simplicial phase space. Phys. Rev. D 82, 064026 (2010). arXiv:1006.4295 ADSCrossRefGoogle Scholar
  35. 35.
    Dupuis, M., Freidel, L., Livine, E.R., Speziale, S.: Holomorphic Lorentzian simplicity constraints. J. Math. Phys. 53, 032502 (2012). arXiv:1107.5274 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kilchrist, M., Packard, D.: The Weierstrass–Enneper representations. Dynamics at the Horsetooth, vol. 4 (2012). http://www.math.colostate.edu/~shipman/47/volume42011/M641_MKilchrist_Packard.pdf
  37. 37.
    Långvik, M., Speziale, S.: Twisted geometries, twistors and conformal transformations. Phys. Rev. D 94(2), 024050 (2016). arXiv:1602.01861 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, J., Ma, Y.: Quasi-local energy in loop quantum gravity. Phys. Rev. D 80, 084027 (2009). arXiv:0812.3554 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Feller, A., Livine, E.R.: Quantum surface and intertwiner dynamics in loop quantum gravity. Phys. Rev. D 95(12), 124038 (2017). arXiv:1703.01156 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Bonzom, V., Dupuis, M., Girelli, F., Livine, E.R.: Deformed phase space for 3d loop gravity and hyperbolic discrete geometries. arXiv:1402.2323
  41. 41.
    Bonzom, V., Dupuis, M., Girelli, F.: Towards the Turaev–Viro amplitudes from a Hamiltonian constraint. Phys. Rev. D 90(10), 104038 (2014). arXiv:1403.7121 ADSCrossRefGoogle Scholar
  42. 42.
    Dupuis, M., Girelli, F., Livine, E.R.: Deformed spinor networks for loop gravity: towards hyperbolic twisted geometries. Gen. Relativ. Gravit. 46(11), 1802 (2014). arXiv:1403.7482 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Dittrich, B., Geiller, M.: Quantum gravity kinematics from extended TQFTs. New J. Phys. 19(1), 013003 (2017). arXiv:1604.05195 ADSCrossRefGoogle Scholar
  44. 44.
    Delcamp, C., Dittrich, B., Riello, A.: Fusion basis for lattice gauge theory and loop quantum gravity. JHEP 02, 061 (2017). arXiv:1607.08881 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Dittrich, B.: (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces. JHEP 05, 123 (2017). arXiv:1701.02037 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Freidel, L., Yokokura, Y.: Non-equilibrium thermodynamics of gravitational screens. Class. Quantum Gravity 32(21), 215002 (2015). arXiv:1405.4881 ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Laboratoire de Physique, ENS de Lyon, CNRS, UCBLUniversité de LyonLyonFrance

Personalised recommendations