Advertisement

Holographic thermalization in AdS-Gauss–Bonnet gravity for small entangled regions

  • Hossein GhaffarnejadEmail author
  • Emad Yaraie
  • Mohammad Farsam
Research Article

Abstract

In this paper we study the propagation of entanglement entropy after a global instantaneous quench on the CFT boundary of AdS bulk. We consider the Gauss–Bonnet model as a higher curvature gravity model for which we correct the RT(HRT) proposal to compute the holographic entanglement entropy. To obtain an analytical solution we perform an approximation approach which bounds our computations to the small subregions and we compare its thermalization regimes to the result of large subsystem case. We can see tsunami picture where the evolution of entanglement breaks down for the large systems and so its details depends just on the shape and size of entangled region and also the used gravity model. We can see the phase transition in this regime is always continuous regardless the shape and size, in contrary with large subregions.

Keywords

Holographic entanglement entropy Gauss-Bonnet gravity ADS/CFT duality Tsunami picture Thermalization Phase transition 

References

  1. 1.
    Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Witten, E.: Anti de sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hooft, G. T: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026
  4. 4.
    Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009). arXiv:hep-th/0903.3246 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hubeny, V. E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 0707, 06 (2007). arXiv:hep-th/0705.0016
  7. 7.
    Freivogel, B., Jefferson, R.A., Kabir, L., Mosk, B., Yang, I.-S.: Casting shadows on holographic reconstruction. Phys. Rev. D 91, 086013 (2015). arXiv:hep-th/1412.5175 ADSCrossRefGoogle Scholar
  8. 8.
    Allais, A., Tonni, E.: Holographic evolution of the mutual information. JHEP 01, 102 (2012). arXiv:hep-th/1110.1607 ADSCrossRefGoogle Scholar
  9. 9.
    Hubeny, V.E., Rangamani, M.: Causal holographic information. JHEP 1206, 114 (2012). arXiv:hep-th/1204.1698 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Headrick, M., Takayanagi, T.: A holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D 76, 106013 (2007). arXiv:hep-th/0704.3719 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hung, L.-Y., Myers, R.C., Smolkin, M.: On holographic entanglement entropy and higher curvature gravity. JHEP 1104, 025 (2011). arXiv:hep-th/1101.5813 ADSCrossRefGoogle Scholar
  12. 12.
    de Boer, J., Kulaxizi, M., Parnachev, A.: Holographic entanglement entropy in Lovelock gravities. JHEP 1107, 109 (2011). arXiv:hep-th/1101.5781 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 1401, 044 (2014). arXiv:hep-th/1310.5713 ADSCrossRefGoogle Scholar
  14. 14.
    Camps, J.: Generalized entropy and higher derivative gravity. JHEP 1403, 070 (2014). arXiv:hep-th/1310.6659 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Danielsson, U.H., Keski-Vakkuri, E., Kruczenski, M.: Spherically collapsing matter in AdS, holography, and shellons. Nucl. Phys. B 563, 279 (1999). arXiv:hep-th/9905227 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Danielsson, U.H., Keski-Vakkuri, E., Kruczenski, M.: Black hole formation in AdS and thermalization on the boundary. JHEP 0002, 039 (2000). arXiv:hep-th/9912209 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Giddings, S.B., Nudelman, A.: Gravitational collapse and its boundary description in AdS. JHEP 0202, 003 (2002). arXiv:hep-th/0112099 ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Calabrese, P., Cardy, J. L.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 0504, P04010 (2005). condmat/0503393Google Scholar
  19. 19.
    Liu, H., Suh, S.J.: Entanglement growth during thermalization in holographic systems. Phys. Rev. D 89, 066012 (2014). arXiv:hep-th/1311.1200 ADSCrossRefGoogle Scholar
  20. 20.
    Liu, H., Suh, S.J.: Entanglement tsunami: universal scaling in holographic thermalization. Phys. Rev. Lett. 112, 011601 (2014). arXiv:hep-th/1305.7244 ADSCrossRefGoogle Scholar
  21. 21.
    Casini, H., Liu, H., Mezei, M.: Spread of entanglement and causality. JHEP 1607, 077 (2016). arXiv:hep-th/1509.05044 ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Hartman, T., Afkhami-Jeddi, N.: Speed limits for entanglement. arXiv:hep-th/1512.02695
  23. 23.
    Zeng, X., Liu, W.: Holographic thermalization in Gauss–Bonnet gravity. Phys. Lett. B 726, 481 (2013). arXiv:hep-th/1305.4841 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Cai, R.G.: Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Caceres, E., Sanchez, M., Virrueta, J.: Holographic entanglement entropy in time dependent Gauss–Bonnet gravity. arXiv:hep-th/1512.05666
  26. 26.
    Ghaffarnejad, H.: Classical and quantum Reissner–Nordström black hole thermodynamics and first order phase transition. Astrophys. Space Sci. 361, 1 (2016). arXiv:physics.gen-ph/1308.1323
  27. 27.
    Ghosh, S.G., Maharaj, S.D., Papnoi, U.: Radiating Kerr–Newman black hole in \(f(R)\) gravity. Eur. Phys. J. C 73, 2473 (2013). arXiv:gr-qc/1208.3028 ADSCrossRefGoogle Scholar
  28. 28.
    Zeng, X.X., Li, L.F.: Van der Waals phase transition in the framework of holography. Phys. Lett. B 764, 100–108 (2017). arXiv:hep-th/1512.08855 ADSCrossRefGoogle Scholar
  29. 29.
    Kundu, S., Pedraza, J.F.: Spread of entanglement for small subsystems in holographic CFTs. Phys. Rev. D 95, 086008 (2017). arXiv:hep-th/1602.05934 ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Gibbons, G., Hawking, S.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 27522756 (1977)Google Scholar
  31. 31.
    Albash, T., Johnson, C.V.: Evolution of holographic entanglement entropy after thermal and electromagnetic quenches. New J. Phys. 13(4), 045017 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Balasubramanian, V., et al.: Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011). arXiv:hep-th/1012.4753 ADSCrossRefGoogle Scholar
  33. 33.
    Balasubramanian, V., et al.: Holographic thermalization. Phys. Rev. D 84, 026010 (2011). arXiv:hep-th/1103.2683 ADSCrossRefGoogle Scholar
  34. 34.
    He, S., Li, L.-F., Zeng, X.-X.: Holographic Van der Waals-like phase transition in the Gauss–Bonnet gravity. Nucl. Phys. B 915, 243261 (2017). arXiv:hep-th/1608.04208 CrossRefGoogle Scholar
  35. 35.
    Zeng, X.-X., Li, L.-F.: Van der Waals phase transition in the framework of holography. Phys. Lett. B 764, 100–108 (2017). arXiv:hep-th/1512.08855 ADSCrossRefGoogle Scholar
  36. 36.
    Lokhande, S.F., Oling, G.W.J., Pedraza, J.F.: Linear response of entanglement entropy from holography. JHEP 10, 104 (2017). arXiv:hep-th/1705.10324 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsSemnan UniversitySemnanIran

Personalised recommendations