Hubble diagrams in the Jordan and Einstein frames

  • Reza RashidiEmail author
Research Article


Different models in cosmology generally predict different Hubble diagrams. Then, the comparison between the Hubble diagrams may be used as a way for distinguishing between different cosmological scenarios. But that is not always the case because there is no guarantee that two different models always have different Hubble diagrams. It may be possible for two physically-inequivalent models to have the same Hubble diagrams. In that case, the Hubble diagram cannot be used to differentiate between two models and it is necessary to find another way to distinguish between them. Therefore, the question of whether two different scenarios are distinguishable by using the Hubble diagrams is an important question which would not have an obvious answer. The Jordan and Einstein frames of f(R) theories of gravity are inequivalent, provided that the metricity condition holds in both frames. In the present paper it is argued that if the time-variation of particle masses in the Einstein frame is taken into consideration, the Hubble diagram derived practically from type Ia supernova surveys does not enable us to differentiate between these two frames. Nevertheless, we show that by waiting long enough to measure the change in Hubble diagram it is possible to differentiate between two frames. In other words, the Hubble diagram cannot be employed alone to differentiate between two frames but comparison between the rates of changes in Hubble diagrams can provide a way to do so.


Modified gravity Jordan and Einstein frames f(R) theories of gravity Hubble diagram 


  1. 1.
    Riess, A.G., et al.: High-z Supernova Search Team, observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Perlmutter, S., et al.: Supernova cosmology project, measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Eisenstein, D.J., et al.: (SDSS), Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Astier, P., et al.: (The SNLS), The supernova legacy survey: measurement of \(\Omega _{M}\), \(\Omega _{\Lambda }\) and \(w\) from the first year data set. Astron. Astrophys. 447, 31 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Spergel, D.N., et al.: (WMAP), Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications. arXiv:astro-ph/0601014
  7. 7.
    Jassal, H., Bagla, J., Padmanabhan, T.: Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. D 72, 103503 (2005). [arXiv:astro-ph/0506748]ADSCrossRefGoogle Scholar
  8. 8.
    Riess, A.G., et al.: Type ia supernova discoveries at \(z>1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004). [arXiv:astro-ph/0402512]ADSCrossRefGoogle Scholar
  9. 9.
    Cole, S., et al.: The 2dF Galaxy Redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505 (2005). [arXiv:astro-ph/0501174]ADSCrossRefGoogle Scholar
  10. 10.
    Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Carroll, S.M.: The cosmological constant. Living Rev. Relat. 4, 1 (2001)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Utiyama, R., DeWitt, B.S.: Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 3, 608 (1962)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Stelle, K.S.: Renormalization of higher-derivative quantum gravity. Phys. Rev. D 16, 953 (1977)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Spacetime. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  15. 15.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Actions in Quantum Gravity. IOP Publishing, Bristol (1992)Google Scholar
  16. 16.
    Vilkovisky, G.A.: Effective action in quantum gravity. Class. Quantum Gravity 9, 895 (1992)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011). [arXiv:1011.0544]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Nojiri, Sh, Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007). [arXiv:hep-th/0601213]MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nojiri, Sh, Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1–104 (2017). [arXiv:1705.11098]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Faraoni, V.: Cosmology in Scalar–Tensor Gravity. Kluwer Academic, Dordrecht (2004)CrossRefGoogle Scholar
  22. 22.
    Dvali, G.R., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D minkowski space. Phys. Lett. B 485, 208 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Maartens, R.: Brane-world gravity. Living Rev. Relat. 7, 7 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Bekenstein, J.D.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). [arXiv:0805.1726v2 [gr-qc]]ADSCrossRefGoogle Scholar
  27. 27.
    Ruzmaikina, T.V., Ruzmaikin, A.A.: Quadratic corrections to the lagrangian density of the gravitational field and the singularity. Zh. Eksp. Teor. Fiz. 57, 680 (1969)ADSGoogle Scholar
  28. 28.
    Ruzmaikina, T.V., Ruzmaikin, A.A.: Quadratic corrections to the lagrangian density of the gravitational field and the singularity. Sov. Phys. JETP 30, 372 (1970)ADSGoogle Scholar
  29. 29.
    Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 18 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99102 (1980)CrossRefGoogle Scholar
  31. 31.
    Schmidt, H.J.: Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209248 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    De Felice, A., Tsujikawa, Sh: f(R) theories. Living Rev. Relat. 13, 3 (2010). [arXiv:1002.4928 [gr-qc]]ADSCrossRefGoogle Scholar
  33. 33.
    Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135–143 (2006). [arXiv:astro-ph/0604431]ADSCrossRefGoogle Scholar
  34. 34.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Actions in Quantum Gravity. IOP Publishing, Bristol (1992)Google Scholar
  35. 35.
    Faraoni, V.: Matter instability in modified gravity. Phys. Rev. D 74, 104017 (2006)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Woodard, R.P.: Avoiding dark energy with 1/R modifications of gravity. Lect. Notes Phys. 720, 403 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Higgs, P.W.: Quadratic lagrangians and general relativity. Nuovo Cim. 11, 816 (1959)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Whitt, B.: Fourth-order gravity as general relativity plus matter. Phys. Lett. B 145, 176 (1984)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Magnano, G., Ferraris, M., Francaviglia, M.: Nonlinear gravitational Lagrangians. Gen. Relativ. Gravit. 19, 465 (1987)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Jakubiec, A., Kijowski, J.: On the universality of Einstein equations. Gen. Relativ. Gravit. 19, 719 (1987)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Jakubiec, A., Kijowski, J.: On theories of gravitation with nonlinear Lagrangians. Phys. Rev. D 37, 1406 (1989)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Jakubiec, A., Kijowski, J.: On theories of gravitation with nonsymmetric connection. J. Math. Phys. 30, 1073 (1989)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Magnano, G., Sokolowski, L.M.: On physical equivalence between nonlinear gravity theories. Phys. Rev. D 50, 5039–5059 (1994). [arXiv:gr-qc/9312008]ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Barrow, J.D., Cotsakis, S.: Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 214, 515 (1988)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Teyssandier, P., Tourrenc, P.: The Cauchy problem for the \(R+R^2\) theories of gravity without torsion. J. Math. Phys. 24, 2793 (1983)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Wands, D.: Extended gravity theories and the Einstein–Hilbert action. Class. Quantum Gravity 11, 269 (1994)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Flanagan, E.E.: The conformal frame freedom in theories of gravitation. Class. Quantum Gravity 21, 3817 (2004). [arXiv:gr-qc/0403063v3]ADSCrossRefGoogle Scholar
  48. 48.
    Sotiriou, T.P., Faraoni, V., Liberati, S.: Theory of gravitation theories: a no-progress report. Int. J. Mod. Phys. D 17, 399–423 (2008). [arXiv:0707.2748v2 [gr-qc]]ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Wetterich, C.: A universe without expansion. Phys. Dark Univ. 2, 184 (2013). [arXiv:1303.6878]CrossRefGoogle Scholar
  51. 51.
    Faraoni, V., Nadeau, Sh: The (pseudo) issue of the conformal frame revisited. Phys. Rev. D 75, 023501 (2007). [arXiv:gr-qc/0612075]ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Catena, R., Pietroni, M., Scarabello, L.: Einstein and Jordan frames reconciled: a frame-invariant approach to scalar-tensor cosmology. Phys. Rev. D 76, 084039 (2007). [arXiv:astro-ph/0604492v2]ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Postma, M., Volponi, M.: Equivalence of the Einstein and Jordan frames. Phys. Rev. D 90, 103516 (2014). [arXiv:1407.6874v2]ADSCrossRefGoogle Scholar
  54. 54.
    Chiba, T., Yamaguchi, M.: Conformal-frame (In)dependence of cosmological observations in scalar–tensor theory. J. Cosmol. Astropart. Phys. 10, 040 (2013). [arXiv:1308.1142]ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Makino, N., Sasaki, M.: The density perturbation in the chaotic inflation with non-minimal coupling. Prog. Theor. Phys. 86, 103 (1991)ADSCrossRefGoogle Scholar
  56. 56.
    Chakraborty, S., SenGupta, S.: Solving higher curvature gravity theories. Eur. Phys. J. C76(10), 552 (2016). [arXiv:1604.05301]ADSCrossRefGoogle Scholar
  57. 57.
    Quiros, I., Garcia-Salcedo, R., Aguilar, J.E.M., Matos, T.: The conformal transformation’s controversy: What are we missing? Gen. Relativ. Gravit. 45, 489 (2013). [arXiv:1108.5857 [gr-qc]]ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Quiros, I., Garcia-Salcedo, R., Aguilar, J.E.M.: Conformal transformations and the conformal equivalence principle. arXiv:1108.2911 [gr-qc]
  59. 59.
    Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: General relativity and weyl frames. arXiv:1106.5543 [gr-qc]
  60. 60.
    Bezrukov, F., Shaposhnikov, M.: Standard model higgs boson mass from inflation: two loop analysis. JHEP 0907, 089 (2009). [arXiv:0904.1537 [hep-ph]]ADSCrossRefGoogle Scholar
  61. 61.
    De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2009). [arXiv:0812.4946 [hep-ph]]ADSCrossRefGoogle Scholar
  62. 62.
    Barvinsky, A.O., Kamenshchik, A.Y., Starobinsky, A.A.: Inflation scenario via the standard model higgs boson and LHC. JCAP 0811, 021 (2008). [arXiv:0809.2104 [hep-ph]]ADSCrossRefGoogle Scholar
  63. 63.
    Briscese, F., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phantom scalar dark energy as modified gravity: understanding the origin of the Big Rip singularity. Phys. Lett. B 646, 105 (2007). [arXiv:hep-th/0612220]ADSCrossRefGoogle Scholar
  64. 64.
    White, J., Minamitsuji, M., Sasaki, M.: Curvature perturbation in multi-field inflation with non-minimal coupling. JCAP 1207, 039 (2012). [arXiv:1205.0656 [astro-ph.CO]]ADSCrossRefGoogle Scholar
  65. 65.
    Brans, C.H.: Nonlinear Lagrangians and the significance of the metric. Class. Quantum Gravity 5, L197 (1988)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999). [arXiv:gr-qc/9811047v1]ADSGoogle Scholar
  67. 67.
    Capozziello, S., Martin-Moruno, P., Rubano, C.: Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 689, 117121 (2010). [arXiv:1003.5394]MathSciNetCrossRefGoogle Scholar
  68. 68.
    Faraoni, V., Gunzig, E.: Einstein frame or Jordan frame. Int. J. Theor. Phys. 38, 217–225 (1999). [arXiv:astro-ph/9910176]MathSciNetCrossRefGoogle Scholar
  69. 69.
    Bahamonde, S., Odintsov, S.D., Oikonomou, V.K., Wright, M.: Correspondence of F(R) gravity singularities in Jordan and Einstein frames. Ann. Phys. 373, 96–114 (2016)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Bahamonde, S., Odintsov, S.D., Oikonomou, V.K., Tretyakov, P.V.: Deceleration versus acceleration universe in different frames of F(R) gravity. Phys. Lett. B 766, 225–230 (2017). [arXiv:1701.02381]ADSCrossRefGoogle Scholar
  71. 71.
    Brooker, D.J., Odintsov, S.D., Woodard, R.P.: Precision predictions for the primordial power spectra from f(R) models of inflation. Nucl. Phys. B 911, 318–337 (2016). [arXiv:1606.05879]ADSCrossRefGoogle Scholar
  72. 72.
    Nayem, Sk, Sanyal, A.K.: Why scalar–tensor equivalent theories are not physically equivalent? Int. J. Mod. Phys. D 26, 1750162 (2017). [arXiv:1609.01824 [gr-qc]]MathSciNetCrossRefGoogle Scholar
  73. 73.
    Karam, A., Pappas, T., Tamvakis, K.: Frame-(in)dependent higher-order inflationary observables in scalar–tensor theories. arXiv:1707.00984 [gr-qc]
  74. 74.
    Cheng, Ta-Pei: Relativity, Gravitation and Cosmology, 2nd edn, pp. 199–200. Oxford University Press Inc., New York (2010)Google Scholar
  75. 75.
    Poisson, E.: The motion of point particles in curved spacetime. Living Rev. Relat. 7, 6 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations