Advertisement

Causal thermodynamics of a gravitational collapse model for an anisotropic fluid with dissipative flows

  • J. M. Z. PretelEmail author
  • M. F. A. da Silva
Research Article

Abstract

This paper presents a hydrodynamic and thermodynamic treatment of a radiant star model that undergoes a dissipative gravitational collapse, from a certain initial configuration until it becomes a black hole. The collapsing star consists of a locally anisotropic non-perfect fluid, shear-free, where we explore the consequences of including bulk viscosities and radial heat flow. We analyze the temporal evolution of the heat flux, mass function, luminosity perceived by an observer at infinity and the effective surface temperature. It is shown that this simple exact model, satisfying all the energy conditions throughout the interior region of the star and during all the collapse process, provides a physically reasonable behavior for the temperature profile in the context of the extended irreversible thermodynamics.

Keywords

Gravitational collapse Causal thermodynamics Junction conditions Energy conditions Compact objects 

Notes

Acknowledgements

The financial assistance from Conselho Nacional de Desenvolvimento Cienífico - CNPq and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ (MFAdaS) and from Coordenação de Aperfeiçãoamento de Pessoal de Nível Superior - CAPES (JMZP) are gratefully acknowledged. We also would like to thank our colleague Leone S. M. Venerone for helpful discussions and comments about this work.

References

  1. 1.
    Vaidya, P.C.: Proc. Ind. Acad. Sci. A33, 264 (1951)ADSCrossRefGoogle Scholar
  2. 2.
    Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    Misner, C.W.: Phys. Rev. 137, B1360 (1965)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Santos, N.O.: Mon. Not. R. Astron. Soc. 216, 403 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Glass, E.N.: Phys. Lett. A 86, 351 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    de Oliveira, A.K.G., Santos, N.O., Kolassis, C.A.: Mon. Not. R. Astron. Soc. 216, 1001 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Kolassis, C.A., Santos, N.O., Tsoubelis, D.: Astrophys. J. 327, 755 (1988)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Herrera, L., le Denmat, G., Santos, N.O.: Mon. Not. R. Astron. Soc. 237, 257 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Chan, R.: Mon. Not. R. Astron. Soc. 288, 589 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Chan, R.: Astrophys. Space Sci. 257, 299 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 267, 637 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Chan, R.: Mon. Not. R. Astron. Soc. 316, 588 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Chan, R.: Astron. Astrophys. 368, 325 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Nogueira, P.C., Chan, R.: Int. J. Mod. Phys. D 13, 1727 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    de Oliveira, A.K.G., Santos, N.O.: Astrophys. J. 312, 640 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Pinheiro, G., Chan, R.: Gen. Relativ. Gravit. 45, 243 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Grammenos, T.: Astrophys. Space Sci. 211, 31 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Martínez, J., Pavón, D.: Mon. Not. R. Astron. Soc. 268, 654 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Eckart, C.: Phys. Rev. 58, 919 (1940)ADSCrossRefGoogle Scholar
  20. 20.
    Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon Press, London (1959)Google Scholar
  21. 21.
    Jou, D., Casas-Vásquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  22. 22.
    Maartens, R.: Causal Thermodynamics in Relativity. Lectures Given at the Hanno Rund Workshop on Relativity and Thermodynamics. Natal University, South Africa (1996)Google Scholar
  23. 23.
    Herrera, L., Pavón, D.: Phys. A 307, 121 (2002)CrossRefGoogle Scholar
  24. 24.
    Hiscock, W., Lindblom, L.: Phys. Rev. 31, 725 (1985)ADSMathSciNetGoogle Scholar
  25. 25.
    Israel, W.: Ann. Phys. 100, 310 (1976)ADSCrossRefGoogle Scholar
  26. 26.
    Israel, W., Stewart, J.M.: Phys. Lett. A 58, 213 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    Herrera, L., Santos, N.O.: Phys. Rev. D 70, 084004 (2004)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Mitra, A.: Phys. Rev. D 74, 024010 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    di Prisco, A., Herrera, L., le Denmat, G., Maccallum, A., Malcom, H., Santos, N.O.: Phys. Rev. D 76, 064017 (2007)Google Scholar
  31. 31.
    Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics, 1st edn. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  32. 32.
    Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 287, 161 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    di Prisco, A., Herrera, L., Esculpi, M.: Class. Quant. Gravit. 13, 1053 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Govender, M., Maharaj, S., Maartens, R.: Class. Quant. Gravit. 15, 323 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Govender, M., Maartens, R., Maharaj, S.: Mon. Not. R. Astron. Soc. 310, 557 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Govender, M., Govinder, K.S.: Phys. Lett. A 283, 71 (2001)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Govender, M., Govinder, K.S.: Int. J. Theor. Phys. 41, 1979 (2002)CrossRefGoogle Scholar
  38. 38.
    Naidu, N.F., Govender, M., Govinder, K.S.: Int. J. Mod. Phys. D 15, 1053 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Lattimer, J.M.: Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Lindquist, R.W., Schwartz, R.A., Misner, C.W.: Phys. Rev. 137, B1364 (1965)ADSCrossRefGoogle Scholar
  41. 41.
    Darmois, G.: Mémorial Des Sciences Mathématiques, vol. 25, p. 1. Gauthier-Villars, Paris (1927)Google Scholar
  42. 42.
    Israel, W.: Nouvo Cim. B 44, 1 (1966)ADSCrossRefGoogle Scholar
  43. 43.
    Israel, W.: Nouvo Cim. B 48, 463 (1967)ADSCrossRefGoogle Scholar
  44. 44.
    Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  45. 45.
    Veneroni, L.S., da Silva, M.F.: arXiv:1807.09926
  46. 46.
    Hernández, H., Nùñez, L.A.: Can. J. Phys. 82, 29 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Massachusetts Institute of Technology, Cambridge (1972)Google Scholar
  49. 49.
    Hernández, H., Nùñez, L.A., Percoco, U.: Class. Quant. Gravit. 16, 871 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. D 55, 374 (1939)ADSCrossRefGoogle Scholar
  51. 51.
    Tolman, R.C.: Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  52. 52.
    Carroll, S.: Spacetime and Geometry, an Introduction to General Relativity, 1st edn. University of Chicago, Chicago (2004)zbMATHGoogle Scholar
  53. 53.
    Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)Google Scholar
  54. 54.
    Schwarzschild, M.: Structure and Evolution of the Stars. Dover Books on Astronomy and Astrophysics (1958)Google Scholar
  55. 55.
    Weinberg, S.: Astrophys. J. 168, 175 (1971)ADSCrossRefGoogle Scholar
  56. 56.
    Martínez, J.: Phys. Rev. D 53, 6921 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    Kolassis, C.A., Santos, N.O., Tsoubelis, D.: Class. Quant. Gravit. 5, 1329 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations