Advertisement

Quantum gravity effect on the Hawking radiation of charged rotating BTZ black hole

  • Ganim Gecim
  • Yusuf SucuEmail author
Research Article

Abstract

In this study, the quantum gravity effect on the tunnelling radiation of charged massive spin-0 scalar particle from \(2+1\) dimensional charged rotating Banados–Teitelboim–Zanelli (BTZ) black hole is looked into by using the Hamilton–Jacobi approach. For this, we calculate the modified Hawking temperature of the black hole by using the modified Klein–Gordon equation based on the generalized uncertainty principle, and we noticed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the angular momentum, energy, charge and mass of the tunnelling scalar particle. Using the modified Hawking temperature, we discussed the stability of the black hole in the context of the modified heat capacity, and observed that it might undergo both first and 1 phase transitions in the presence of the quantum gravity effect, but just a first-type transition in the absence of the quantum gravity effect. Furthermore, we investigated the modified Hawking temperature of the black hole by using the tunnelling processes of the charged massive Dirac and vector boson particles. We observed that scalar, Dirac and vector particles are tunnelled from the black hole completely differently from each other in the presence of the quantum gravity effect.

Keywords

BTZ black hole Quantum gravity Tunnelling Hawking radiation 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for his/her comments and positive contribution to the context of the paper. This work was supported by Akdeniz University Scientific Research Projects Unit and the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 116F329.

References

  1. 1.
    Hinrichsen, H., Kempf, A.: J. Math. Phys. 37(5), 2121–2137 (1996)ADSMathSciNetGoogle Scholar
  2. 2.
    Kempf, A.: J. Math. Phys. 383, 1347–1372 (1997)ADSGoogle Scholar
  3. 3.
    Ali, A.F., Das, S., Vagenas, E.C.: Phys. Lett. B 678, 497–499 (2009)ADSMathSciNetGoogle Scholar
  4. 4.
    Das, S., Vagenas, E.C., Ali, A.F.: Phys. Lett. B 690, 407–412 (2010). [Erratum ibid. 692, 342 (2010)]ADSGoogle Scholar
  5. 5.
    Carr, B.J., Mureika, J., Nicolini, P.: JHEP 2015(07), 052 (2015)Google Scholar
  6. 6.
    Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52(2), 1108–1118 (1995)ADSMathSciNetGoogle Scholar
  7. 7.
    Hossenfelder, S., et al.: Phys. Lett. B 575, 85–99 (2003)ADSGoogle Scholar
  8. 8.
    Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33(12), 2101–2108 (2002)ADSGoogle Scholar
  9. 9.
    Maggiore, M.: Phys. Lett. B 304, 65–69 (1993)ADSMathSciNetGoogle Scholar
  10. 10.
    Tawfik, A., Diab, A.: Int. J. Mod. Phys. D 23(12), 1430025 (2014)ADSGoogle Scholar
  11. 11.
    Chen, D., Jiang, Q.Q., Wang, P., Yang, H.: JHEP 2013(11), 176 (2013)ADSGoogle Scholar
  12. 12.
    Chen, D.Y., Wu, H.W., Yang, H.: JCAP 2014(03), 036 (2014)Google Scholar
  13. 13.
    Chen, D., Wu, H., Yang, H., Yang, S.: Int. J. Mod. Phys. D 29(26), 1430054 (2014)ADSGoogle Scholar
  14. 14.
    Gecim, G., Sucu, Y.: Adv. High Energy Phys. 2018, 7031767 (2018)Google Scholar
  15. 15.
    Gecim, G., Sucu, Y.: Phys. Lett. B 773, 391–394 (2017)ADSGoogle Scholar
  16. 16.
    Gecim, G., Sucu, Y.: Adv. High Energy Phys. 2018, 8728564 (2018)Google Scholar
  17. 17.
    Gecim, G., Sucu, Y.: Mod. Phys. Lett. A 33(28), 1850164 (2018)ADSGoogle Scholar
  18. 18.
    Carter, B.: Nature 238, 71–72 (1972)ADSGoogle Scholar
  19. 19.
    Bekenstein, J.D.: Phys. Rev. D 7(8), 2333–2346 (1973)ADSMathSciNetGoogle Scholar
  20. 20.
    Bekenstein, J.D.: Phys. Rev. D 9(12), 3292–3300 (1974)ADSMathSciNetGoogle Scholar
  21. 21.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161–170 (1973)ADSGoogle Scholar
  22. 22.
    Hawking, S.W.: Nature 248, 30–31 (1974)ADSGoogle Scholar
  23. 23.
    Hawking, S.W.: Commun. Math. Phys. 43, 199–220 (1975)ADSGoogle Scholar
  24. 24.
    Hawking, S.W.: Phys. Rev. D 13(2), 191–197 (1976)ADSGoogle Scholar
  25. 25.
    Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403–420 (1995)ADSGoogle Scholar
  26. 26.
    Kraus, P., Wilczek, F.: Nucl. Phys. B 437, 231–242 (1995)ADSGoogle Scholar
  27. 27.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85(24), 5042–5045 (2000)ADSMathSciNetGoogle Scholar
  28. 28.
    Parikh, M.K.: Phys. Lett. B 546, 189–195 (2002)ADSMathSciNetGoogle Scholar
  29. 29.
    Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: JHEP 2005(5), 014 (2005)ADSGoogle Scholar
  30. 30.
    Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60(024007), 1–20 (1999)Google Scholar
  31. 31.
    Shankaranarayanan, S., Srinivasan, K., Padmanabhan, T.: Mod. Phys. Lett. A 16(9), 571–578 (2001)ADSGoogle Scholar
  32. 32.
    Kerner, R., Mann, R.B.: Phys. Rev. D 73(104010), 1–11 (2006)Google Scholar
  33. 33.
    Kerner, R., Mann, R.B.: Class. Quantum Gravity 25(9), 1–17 (2008)Google Scholar
  34. 34.
    Kerner, R., Mann, R.B.: Phys. Rev. D 75(084022), 1–9 (2007)Google Scholar
  35. 35.
    Gecim, G., Sucu, Y.: arXiv:1406.0290v2 (2014)
  36. 36.
    Gecim, G., Sucu, Y.: JCAP 2013(02), 023 (2013)Google Scholar
  37. 37.
    Gecim, G., Sucu, Y.: Astrophys. Space Sci. 357, 105 (2015)ADSGoogle Scholar
  38. 38.
    Gecim, G., Sucu, Y.: EPJ Plus 132(3), 105 (2017)ADSGoogle Scholar
  39. 39.
    Chen, G.R., Zhou, S., Huang, Y.C.: Int. J. Mod. Phys. D 24(1550005), 1–7 (2015)Google Scholar
  40. 40.
    Li, H.-L., Yang, S.-Z., Jiang, Q.-Q., Qi, D.-J.: Phys. Lett. B 641, 139–144 (2006)ADSMathSciNetGoogle Scholar
  41. 41.
    Ejaz, A., Gohar, H., Lin, H., Saifullah, K., Yau, S.-T.: Phys. Lett. B 726, 827–833 (2013)ADSMathSciNetGoogle Scholar
  42. 42.
    Li, R., Ren, J.-R.: Phys. Lett. B 661, 370–372 (2008)ADSMathSciNetGoogle Scholar
  43. 43.
    Chen, G.-R., Zhou, S., Huang, Y.-C.: Int. J. Mod. Phys. D 24, 1550005 (2015)ADSGoogle Scholar
  44. 44.
    Vagenas, E.C.: Nuovo Cim. B 117, 899–908 (2002)ADSGoogle Scholar
  45. 45.
    Vagenas, E.C.: Phys. Lett. B 533, 302–306 (2002)ADSGoogle Scholar
  46. 46.
    Vagenas, E.C.: Mod. Phys. Lett. A 17, 609–618 (2002)ADSMathSciNetGoogle Scholar
  47. 47.
    Li, X.Q.: Phys. Lett. B 763, 80–86 (2016)ADSGoogle Scholar
  48. 48.
    Chen, D., Wu, H., Yang, H.: Adv. High Energy Phys. 2013, 432412 (2013)Google Scholar
  49. 49.
    Zeng, X.X., Chen, Y.: Gen. Relativ. Gravit. 47(4), 47 (2015)ADSGoogle Scholar
  50. 50.
    Li, H.L., Feng, Z.W., Zu, X.T.: Gen. Relativ. Gravit. 48(2), 18 (2016)ADSGoogle Scholar
  51. 51.
    Wang, P., Yang, H., Ying, S.: Int. J. Theor. Phys. 55(5), 26332642 (2016)Google Scholar
  52. 52.
    Liu, Z.Y., Ren, J.R.: Commun. Theor. Phys. 62(6), 819–823 (2014)ADSMathSciNetGoogle Scholar
  53. 53.
    Mu, B., Wang, P., Yang, H.: Adv. High Energy Phys. 2015, 898916 (2015)Google Scholar
  54. 54.
    Li, G., Zu, X.: JAMP 03, 134–139 (2015)Google Scholar
  55. 55.
    Anacleto, M.A., Brito, F.A., Passos, E.: Phys. Lett. B 749, 181–186 (2015)ADSGoogle Scholar
  56. 56.
    Casadio, R., Nicolini, P., da Rocha, R.: Class. Quantum Gravity 35, 185001 (2018)ADSGoogle Scholar
  57. 57.
    Sadeghi, J., Shajiee, V.R.: EPJ Plus 132(3), 132 (2017)ADSGoogle Scholar
  58. 58.
    Sakalli, I., Ovgun, A., Jusufi, K.: Astrophys. Space Sci. 361, 330 (2016)ADSGoogle Scholar
  59. 59.
    Ovgun, A., Jusufi, K.: EPJ Plus 132(7), 298 (2017)ADSGoogle Scholar
  60. 60.
    Li, H., Zu, X.: Astrophys. Space Sci. 357, 6 (2015)ADSGoogle Scholar
  61. 61.
    Feng, Z., Zhang, L., Zu, X.: Mod. Phys. Lett. A 29(26), 1450123 (2014)ADSGoogle Scholar
  62. 62.
    Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69(13), 1849–1851 (1992)ADSMathSciNetGoogle Scholar
  63. 63.
    Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 48, 1506 (1993)ADSMathSciNetGoogle Scholar
  64. 64.
    Clement, G.: Class. Quantum Gravity 10, L49–L54 (1993)ADSGoogle Scholar
  65. 65.
    Clement, G.: Phys. Lett. B 367, 70–74 (1996)ADSMathSciNetGoogle Scholar
  66. 66.
    Hendi, S.H.: JHEP 2012(03), 065 (2012)Google Scholar
  67. 67.
    Hendi, S.H., Panah, B.E., Panahiyan, S.: JHEP 2016(05), 029 (2016)Google Scholar
  68. 68.
    Born, M., Infeld, L.: Proc. R. Soc. Lond. 144, 425 (1934)ADSGoogle Scholar
  69. 69.
    Hoffmann, B.: Phys. Rev. 47, 877 (1935)ADSGoogle Scholar
  70. 70.
    Bardeen, J.M.: In: Proceedings of GR5, p. 174. USSR, Tiflis (1968)Google Scholar
  71. 71.
    Ayon-Beato, E., Garcia, A.: Phys. Lett. B 464, 25 (1999)ADSMathSciNetGoogle Scholar
  72. 72.
    Myung, Y.S., Yoom, M.: Eur. Phys. J. C 62, 405–411 (2009)ADSGoogle Scholar
  73. 73.
    Mazharimousavi, S.H., Halilsoy, M., Tahamatan, T.: Phys. Lett. B 376, 893–898 (2012)Google Scholar
  74. 74.
    Mazharimousavi, S.H., Halilsoy, M.: Eur. Phys. J. C 73, 2527 (2013)ADSGoogle Scholar
  75. 75.
    He, Y., Ma, M.-S.: Phys. Lett. B 774, 229–234 (2017)ADSGoogle Scholar
  76. 76.
    Sajadi, S.N., Riazi, N.: Gen. Relativ. Gravit. 49, 45 (2017)ADSGoogle Scholar
  77. 77.
    Wu, S.-Q., Jiang, Q.-Q.: JHEP 2006(03), 079 (2016)ADSGoogle Scholar
  78. 78.
    Jiang, Q.-Q., Wu, S.-Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)ADSMathSciNetGoogle Scholar
  79. 79.
    Chen, D., Wu, H., Yang, H., Yang, S.: Int. J. Mod. Phys. A 29(26), 1430054 (2014)ADSGoogle Scholar
  80. 80.
    Rizwan, M., Saifullah, K.: Int. J. Mod. Phys. D 26(5), 1741018 (2017)ADSGoogle Scholar
  81. 81.
    Mahanta, C.R., Misra, R.: Astrophys. Space Sci. 348, 437 (2013)ADSGoogle Scholar
  82. 82.
    Jan, K., Gohar, H.: Astrophys. Space Sci. 350, 279–284 (2014)ADSGoogle Scholar
  83. 83.
    Sakalli, I., vgn, A., Jusufi, K.: Astrophys. Space Sci. 361, 330 (2016)ADSGoogle Scholar
  84. 84.
    Anacleto, M.A., Brito, F.A., Cavalcanti, A.G., Passos, E., Spinelly, J.: Gen. Relativ. Gravit. 50(2), 23 (2018)ADSGoogle Scholar
  85. 85.
    Li, X.-Q., Chen, G.-R.: Phys. Lett. B 751, 34–38 (2015)ADSGoogle Scholar
  86. 86.
    Di Criscienzo, R., Vanzo, L.: EPL 82(6), 60001 (2008)Google Scholar
  87. 87.
    Volovik, G.E.: Exotic Properties of Superfluid 3He. World Scientific, Singapore (1992)Google Scholar
  88. 88.
    Volovik, G.E.: JETP 69, 705–713 (1999)Google Scholar
  89. 89.
    Volovik, G.E.: The Universe in a Helium Droplet. Clarendon Press, Oxford (2003)zbMATHGoogle Scholar
  90. 90.
    Cai, R.-G., Cao, L.-M., Ohta, N.: Phys. Lett. B 679, 504–509 (2009)ADSMathSciNetGoogle Scholar
  91. 91.
    Dehghani, M.: Phys. Rev. D 94, 104071 (2016)ADSMathSciNetGoogle Scholar
  92. 92.
    Hendi, S.H., Panahiyan, S., Panah, B.E.: Adv. High Energy Phys. 2015, 743086 (2015)Google Scholar
  93. 93.
    Miao, Y.-G., Wu, Y.-M.: Adv. High Energy Phys. 2017, 1095217 (2017)Google Scholar
  94. 94.
    Akbar, M., Siddiqui, A.A.: Phys. Lett. B 656, 217–220 (2007)ADSMathSciNetGoogle Scholar
  95. 95.
    Sucu, Y., Unal, N.: J. Math. Phys. 485, 052503 (2007)ADSGoogle Scholar
  96. 96.
    Dernek, M., Gurtas Dogan, S., Sucu, Y., Unal, N.: Turk. J. Phys. (2018).  https://doi.org/10.3906/fiz-1801-8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceAkdeniz UniversityAntalyaTurkey

Personalised recommendations