Quantum singularities in self-similar spacetimes

  • D. A. KonkowskiEmail author
  • J. Williams
  • T. M. Helliwell
Research Article


Singularities, which are commonplace in general relativity, are indicated by causal geodesic incompleteness in otherwise maximal spacetimes. Can such singularities be healed (or “resolved”) quantum mechanically? Geodesics are in effect the paths of classical particles, which led Horowitz and Marolf to propose that they be replaced by quantum wave packets. Then a singularity is healed if the quantum wave operator can be shown to be essentially self-adjoint. We explore here a generalized Horowitz–Marolf approach for conformally static spacetimes in the context of the Klein–Gordon operator in the vicinity of singularities in the self-similar spacetimes introduced by Brady. We show that it fails the self-adjointness test for an entire generic class of spacetimes that have asymptotically power-law metric coefficients near the classically-singular origin, so the singularities in these spacetimes cannot be healed using quantum wave packets.


Quantum singularities Essential self-adjointness Self-similar spacetimes Scalar curvature singularities 



One of us (DAK) thanks Queen Mary University of London, where some of this research was carried out, for their hospitality.


  1. 1.
    Hawking, S.W., Ellis, G.F.R.: The Large-Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)CrossRefGoogle Scholar
  2. 2.
    Coley, A.A.: Phys. Scr. 97, 093003 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Wald, R.M.: J. Math. Phys. 21, 2802 (1980)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Horowitz, G.T., Marolf, D.: Phys. Rev. D 52, 5670 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Helliwell, T.M., Konkowski, D.A., Arndt, V.: Gen. Relativ. Gravit. 35, 79 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Pitelli, J.P.M., Letelier, P.S.: Int. J. Mod. Phys. D 20, 729 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Gurtug, O., Halilsoy, M., Mazharimousavi, S.H.: J. High Energ. Phys. 2014, 178 (2014)CrossRefGoogle Scholar
  8. 8.
    Konkowski, D.A., Helliwell, T.M.: Int. J. Mod. Phys. A 26, 3878 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Helliwell, T.M., Konkowski, D.A.: Phys. Rev. D 87, 104041 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Brady, P.R.: Phys. Rev. D 51, 4168 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Eardley, D.M.: Commun. Math. Phys. 37, 287 (1974)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ishibashi, A., Hosoya, A.: Phys. Rev. D 60, 104028 (1999)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Carr, B.J., Coley, A.A.: Class. Quant. Grav. 16, R31 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Geroch, R.: Ann. Phys. 48, 526 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    Ellis, G.F.R., Schmidt, B.G.: Gen. Relativ. Gravit. 8, 915 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    Reed, M., Simon, B.: Functional Analysis. Academic Press, New York (1972)zbMATHGoogle Scholar
  17. 17.
    Reed, M., Simon, B.: Fourier Analysis and Self-Adjointness. Academic Press, New York (1972)Google Scholar
  18. 18.
    Richmyer, R.D.: Principles of Advanced Mathematical Physics, vol. I. Springer, New York (1978)CrossRefGoogle Scholar
  19. 19.
    von Neumann, J.: Math. Ann. 102, 49 (1929)CrossRefGoogle Scholar
  20. 20.
    Weyl, H.: Math. Ann. 68, 220 (1910)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Seggev, I.: Class. Quantum Grav. 21, 2651 (2004)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Carminati, J., McLenaghan, R.G.: J. Math. Phys. 32, 3135 (1991)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsU.S. Naval AcademyAnnapolisUSA
  2. 2.Department of PhysicsHarvey Mudd CollegeClaremontUSA

Personalised recommendations