Advertisement

Notes on the Sagnac effect in general relativity

  • Jörg FrauendienerEmail author
Research Article

Abstract

The Sagnac effect can be described as the difference in travel time between two photons traveling along the same path in opposite directions. In this paper we explore the consequences of this characterisation in the context of General Relativity. We derive a general expression for this time difference in an arbitrary space-time for arbitrary paths. In general, this formula is not very useful since it involves solving a differential equation along the path. However, we also present special cases where a closed form expression for the time difference can be given. The main part of the paper deals with the discussion of the effect in a small neighbourhood of an arbitrarily moving observer in their arbitrarily rotating reference frame. We also discuss the special case of stationary space-times and point out the relationship between the Sagnac effect and Fizeau’s “aether-drag” experiment.

Keywords

Sagnac effect Arbitrary moving reference frame Gravitational wave detection Frame dragging Fizeau experiment 

Notes

Acknowledgements

I wish to thank the CNRS of France for a visiting position at the Département de Mathématiques at Université de Bourgogne in Dijon, where some of this research was carried out. My thanks also go to Eyal Schwartz for sparking my interest in the Sagnac effect and to Niels Kjaergaard for pointing me to reference [12].

References

  1. 1.
    Allan, D.W., Weiss, M.A., Ashby, N.: Around-the-world relativistic Sagnac experiment. Science 228, 69–70 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    Bond, C., Brown, D., Freise, A., Strain, K.A.: Interferometer techniques for gravitational-wave detection. Living Rev. Relativ. 19, 3 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Choquet-Bruhat, Y.: Introduction to General Relativity, Black Holes and Cosmology. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  4. 4.
    Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ehlers, J.: Zum Übergang von der wellenoptik zur geometrischen optik in der allgemeinen relativitätstheorie. Z. Naturforschung Sect. A J. Phys. Sci. 22(9), 1328–1332 (1967)ADSGoogle Scholar
  6. 6.
    Fizeau, H.: Sur les hypothèses relatives à l’éther lumineux, et sur une expérience qui paraît démontrer que le mouvement des corps change la vitesse aves laquelle la lumière se propage dans leur intérieur. C. R. Acad. Sci. 33, 349–355 (1851)Google Scholar
  7. 7.
    Gordon, W.: Zur lichtfortpflanzung nach der relativitätstheorie. Ann. Phys. 377, 421–456 (1923)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hafele, J.C., Keating, R.E.: Around-the-world atomic clocks: predicted relativistic time gains. Science 177(4044), 166–168 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    Hasselbach, F., Nicklaus, M.: Sagnac experiment with electrons: observation of the rotational phase shift of electron waves in vacuum. Phys. Rev. A 48(1), 143–151 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Huttner, S.H., Danilishin, S.L., Barr, B.W.: Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers. Class. Quantum Gravity 34(2), 024001 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Knopf, O.: Die Versuche von F. Harreß über die Geschwindigkeit des Lichtes in bewegten Körpern. Ann. Phys. 367(13), 389–447 (1920)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lahaye, T., Labastie, P., Mathevet, R.: Fizeau’s “aether-drag” experiment in the undergraduate laboratory. Am. J. Phys. 80(6), 497–505 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Leeb, W.R., Schiffner, G., Scheiterer, E.: Optical fiber gyroscopes—Sagnac or Fizeau effect. Appl. Opt. 18(9), 1293–1295 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    Manasse, F.K., Misner, C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4(6), 735–745 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ori, A., Avron, J.E.: Generalized Sagnac–Wang–Fizeau formula. Phys. Rev. A 94(6), 063837 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Penrose, R., Rindler, W.: Spinors and Spacetime: Two-Spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press, Cambridge (1984)CrossRefzbMATHGoogle Scholar
  17. 17.
    Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39(2), 475–493 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    Sagnac, G.: L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. 157, 708–710 (1913)Google Scholar
  19. 19.
    Sagnac, G.: Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. C. R. Acad. Sci. 157, 1410–1413 (1913)Google Scholar
  20. 20.
    Schwartz, E.: Sagnac effect in an off-center rotating ring frame of reference. Eur. J. Phys. 38(1), 015301 (2017)CrossRefGoogle Scholar
  21. 21.
    Straumann, N.: General Relativity, 2nd edn. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    Synge, J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1976)zbMATHGoogle Scholar
  23. 23.
    Tartaglia, A.: General relativistic corrections to the Sagnac effect. Phys. Rev. D 58(6), 064009 (1998)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    von Laue, M.: Zum Versuch von F. Harreß. Ann. Phys. 367(13), 448–463 (1920)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, R., Zheng, Y., Yao, A.: Generalized Sagnac effect. Phys. Rev. Lett. 93(14), 143901 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand
  2. 2.Institut de Mathématiques de BourgogneUniversité de BourgogneDijonFrance

Personalised recommendations