Advertisement

Rigid covariance, equivalence principle and Fermi rigid coordinates: gravitational waves

  • Xavier Jaén
Research Article
  • 4 Downloads

Abstract

For a given space-time and for an arbitrary time-like geodesic, we analyze the conditions for the construction of Fermi coordinates so that they are also rigid covariant. We then apply these conditions to linear plane gravitational waves.

Keywords

Rigid motion Fermi coordinates Equivalence principle Linear plane gravitational wave 

Notes

Acknowledgements

I want to thank Alfred Molina for carefully reading a previous draft of the paper and providing useful criticism that led to improvements; and Lluís Bel, without whose inspiration and encouragement, hardly any of this series of papers would have occurred to me.

References

  1. 1.
    Jaén, X., Molina, A.: Rigid motions and generalized Newtonian gravitation. Gen. Relativ. Gravit. 45, 1531–1546 (2013)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Jaén, X., Molina, A.: Homothetic motions and Newtonian cosmology. Gen. Relativ. Gravit. 46, 1–14 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jaén, X., Molina, A.: On the meaning of Painlevé–Gullstrand synchronization. Gen. Relativ. Gravit. 47, 1–16 (2015)CrossRefGoogle Scholar
  4. 4.
    Jaén, X., Molina, A.: Rigid covariance as a natural extension of Painlevé–Gullstrand space-times: gravitational waves. Gen. Relativ. Gravit. 49, 108 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Born, M.: Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips. Phys. Z. 10, 814–817 (1909)zbMATHGoogle Scholar
  6. 6.
    Bona, C.: Rigid-motion conditions in special relativity. Phys. Rev. D 27(6), 1243 (1983)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bel, L.: Rigid motion invariance of Newtonian and Einstein’s theories of general relativity. In: Verdaguer, E., Cespedes, J., Jaume, G. (Eds.) Recent developments in gravitation-Proceedings of the Relativity Meeting-89. World Scientific (1990)Google Scholar
  8. 8.
    Bel, L.: Static elastic deformations in general relativity (1996). arXiv preprint arXiv:gr-qc/9609045
  9. 9.
    Llosa, J., Soler, D.: Reference frames and rigid motions in relativity. Class. Quantum Gravity 21(13), 3067 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Coll, B.: About deformation and rigidity in relativity. J. Phys. Conf. Ser. 66(1), 1–17.  https://doi.org/10.1088/1742-6596/66/1/012001 (2007)Google Scholar
  11. 11.
    Fermi, E.: Sopra i Fenomeni che Avvengono in Vicinanza di Una Linea Oraria. Rend. Accad. Naz. Lincei 31, 21–23, 51–52, 101–103 (1922)Google Scholar
  12. 12.
    Manasse, F., Misner, C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4, 735–745 (1963)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Riemann, B.: Sur les hypothèses qui servent de fondement à la Gèomètrie. Ann. Mat. Pura Appl. 1867–1897(3), 309–326 (1869)CrossRefGoogle Scholar
  14. 14.
    Ni, W.-T., Zimmermann, M.: Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. Phys. Rev. D 17, 1473 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    Li, W.-Q., Ni, W.-T.: Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. J. Math. Phys. 20, 1473–1480 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    Li, W.-Q., Ni, W.-T.: Expansions of the affinity, metric and geodesic equations in Fermi normal coordinates about a geodesic. J. Math. Phys. 20, 1925–1929 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    Nesterov, A.I.: Riemann normal coordinates, Fermi reference system and the geodesic deviation equation. Class. Quantum Gravity 16, 465 (1999)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Marzlin, K.-P.: Fermi coordinates for weak gravitational fields. Phys. Rev. D 50, 888 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Rakhmanov, M.: Response of test masses to gravitational waves in the local Lorentz gauge. Phys. Rev. D 71, 084003 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Marzlin, K.-P.: The physical meaning of Fermi coordinates. Gen. Relativ. Gravit. 26, 619–636 (1994)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Delva, P., Angonin, M.-C.: Extended Fermi coordinates. Gen. Relativ. Gravit. 44, 1–19 (2012)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Dyson, F.J.: Feynman’s proof of the Maxwell equations. Am. J. Phys 58, 209–211 (1990)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Painlevé, P.: Le Mecanique Classique et la Theorie de la Relativite. L’Astronomie 36, 6–9 (1922)ADSGoogle Scholar
  24. 24.
    Gullstrand, A.: Allgemeine ösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie. Almqvist & Wiksell, Stockholm (1922)zbMATHGoogle Scholar
  25. 25.
    Möller, C.: The Theory of Relativity. Clarendon Press, Oxford (1952)zbMATHGoogle Scholar
  26. 26.
    Bel, L.: Eppur si muove ! In: Rizzi, G., Ruggiero, M.L. (Eds.) Relativity in rotating frames, relativistic physics in rotating reference frames. Kluwer Academic Publisher, Dordrecht (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. de FísicaUniversitat Politènica de CatalunyaBarcelonaSpain

Personalised recommendations