Advertisement

Leading-order corrections to charged rotating AdS black holes thermodynamics

  • Sudhaker Upadhyay
Research Article

Abstract

In this paper, we consider a charged rotating AdS black holes in four dimensions and study the effects of leading-order thermal corrections on the thermodynamics of such system explicitly. The first-order corrected thermodynamical quantities also satisfy the first-law of thermodynamics of the black holes. The holographic duality between the charged rotating AdS black holes and Van der Waals fluid is also emphasized through the \(P-v\) diagram. Finally, we study the effects of the leading-order thermal corrections on the stability of the charged rotating black holes.

Keywords

Charged rotating AdS black holes Thermodynamics Stability 

References

  1. 1.
    Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Das, S., Majumdar, P., Bhaduri, R.K.: General logarithmic corrections to black hole entropy. Class. Quant. Gravit. 19, 2355 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Pathak, A., Porfyriadis, A.P., Strominger, A., Varela, O.: Logarithmic corrections to black hole entropy from Kerr/CFT. JHEP 04, 090 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Carlip, S.: Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quant. Gravit. 17, 4175 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Upadhyay, S., Pourhassan, B., Farahani, H.: \(P-V\) criticality of first-order entropy corrected AdS black holes in massive gravity. Phys. Rev. D. 95, 106014 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hendi, S.H., Mann, R.B., Panahiyan, S., Eslam Panah, B.: Van der Waals like behavior of topological AdS black holes in massive gravity. Phys. Rev. D 95, 021501(R) (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Pourhassan, B., Upadhyay, S., Saadat, H., Farahani, H.: Quantum gravity effects on Hořava–Lifshitz black hole. arXiv:1705.03005 [hep-th]
  8. 8.
    Pourhassan, B., Faizal, M.: Effect of thermal fluctuations on a charged dilatonic black saturn. Phys. Lett. B 755, 444 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Pourhassan, B., Upadhyay, S., Farahani, H.: Thermodynamics of higher order entropy corrected Schwarzschild-Beltrami-de Sitter black hole. arXiv:1701.08650 [physics.gen-ph]
  10. 10.
    Sadeghi, J., Pourhassan, B., Rostami, M.: \(P-V\) criticality of logarithm-corrected dyonic charged AdS black holes. Phys. Rev. D 94, 064006 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Pourhassan, B., Faizal, M., Debnath, U.: Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole. Eur. Phys. J. C 76, 145 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Pourhassan, B., Faizal, M., Capozziello, S.: Testing quantum gravity through dumb holes. Ann. Phys. 377, 108 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Carter, B.: Hamilton–Jacobi and Schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Caldarelli, M.M., Cognola, G., Klemm, D.: Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class. Quantum Gravit. 17, 399 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bohr, A., Mottelson, B.R.: Nuclear Structure, vol. 1. W. A. Benjamin Inc., New York (1969)zbMATHGoogle Scholar
  16. 16.
    Bhaduri, R.K.: Models of the Nucleon. Addison-Wesley, Boston (1988)Google Scholar
  17. 17.
    Rajagopal, A., Kubiznak, D., Mann, R.B.: Van der Waals black hole. Phys. Lett. B 737, 277 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, K.L.S. CollegeMagadh UniversityNawadaIndia
  2. 2.Inter-University Centre for Astronomy and Astrophysics (IUCAA)PuneIndia

Personalised recommendations