Existence of CMC Cauchy surfaces from a spacetime curvature condition

  • Gregory J. Galloway
  • Eric Ling
Research Article


In this note we present a result establishing the existence of a compact CMC Cauchy surface from a curvature condition related to the strong energy condition.


Constant mean curvature Cosmological spacetime Curvature condition 


  1. 1.
    Alexander, S.B., Bishop, R.L.: Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Commun. Anal. Geom. 16(2), 251–282 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andersson, L., Moncrief, V.: Future Complete Vacuum Spacetimes, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 299–330. Birkhäuser, Basel (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature surfaces. Commun. Math. Phys. 117(4), 615–624 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. Marcel Dekker Inc, New York (1996)zbMATHGoogle Scholar
  5. 5.
    Budic, R., Sachs, R.K.: Deterministic space-times. Gen. Relativ. Gravit. 7(1), 21–29 (1976). The riddle of gravitation–on the occasion of the 60th birthday of Peter G. Bergmann (Proc. Conf., Syracuse Univ., Syracuse, N. Y., 1975)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chruściel, P.T., Isenberg, J., Pollack, D.: Initial data engineering. Commun. Math. Phys. 257(1), 29–42 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dilts, J., Holst, M.: When do spacetimes have constant mean curvature slices? arXiv:1710.03209 (2017)
  8. 8.
    Ehrlich, P.E., Galloway, G.J.: Timelike lines. Class. Quantum Gravity 7(3), 297 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galloway, G.J., Vega, C.: Hausdorff closed limits and rigidity in Lorentzian geometry. Ann. Henri Poincaré 18(10), 3399–3426 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31(3), 289–308 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, London (1973). Cambridge Monographs on Mathematical Physics, No. 1CrossRefzbMATHGoogle Scholar
  12. 12.
    O’Neill, B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983)Google Scholar
  13. 13.
    Penrose, R.: Techniques of differential topology in relativity. Society for Industrial and Applied Mathematics, Philadelphia, PA, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7 (1972)Google Scholar
  14. 14.
    Rodnianski, I., Speck, J.: Stable Big Bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems arXiv:1407.6298
  15. 15.
    Tipler, F.J.: A new condition implying the existence of a constant mean curvature foliation. Directions in General Relativity: Proceedings of the 1993 International Symposium, Maryland: Papers in Honor of Dieter Brill 2(10), 306–315 (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MiamiCoral GablesUSA

Personalised recommendations