Advertisement

The Weiss variation of the gravitational action

  • Justin C. FengEmail author
  • Richard A. Matzner
Research Article

Abstract

The Weiss variational principle in mechanics and classical field theory is a variational principle which allows displacements of the boundary. We review the Weiss variation in mechanics and classical field theory, and present a novel geometric derivation of the Weiss variation for the gravitational action: the Einstein–Hilbert action plus the Gibbons–Hawking–York boundary term. In particular, we use the first and second variation of area formulas (we present a derivation accessible to physicists in an “Appendix”) to interpret and vary the Gibbons–Hawking–York boundary term. The Weiss variation for the gravitational action is in principle known to the Relativity community, but the variation of area approach formalizes the derivation, and facilitates the discussion of time evolution in General Relativity. A potentially useful feature of the formalism presented in this article is that it avoids an explicit 3 \(+\) 1 decomposition in the bulk spacetime.

Keywords

Weiss variation Gibbons–Hawking–York term Variation of area Hamilton–Jacobi theory 

Notes

Acknowledgements

This article is based on the dissertation work of J. C. Feng. We thank Mr. Mark Selover, Prof. E. C. G. Sudarshan and Prof. G. Bhamathi for their comments and encouragement. J. C. Feng also thanks Prof. Austin Gleeson, Prof. Philip J. Morrison, Prof. Richard D. Hazeltine, and Prof. Robert E. Gompf for their guidance and service as members of his dissertation committee. This work was partially supported by the National Science Foundation under Grant Number PHY-1620610.

References

  1. 1.
    Sudarshan, E., Mukunda, N.: Classical Dynamics: A Modern Perspective. R.E. Krieger, Malabar (1983)zbMATHGoogle Scholar
  2. 2.
    Matzner, R.A., Shepley, L.C.: Classical Mechanics. Prentice Hall, Upper Saddle River (1991)zbMATHGoogle Scholar
  3. 3.
    Brown, J.D., York, J.W.: Phys. Rev. D 47, 1407 (1993).  https://doi.org/10.1103/PhysRevD.47.1407 ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Hawking, S.W., Horowitz, G.T.: Class. Quantum Gravity 13, 1487 (1996).  https://doi.org/10.1088/0264-9381/13/6/017 ADSCrossRefGoogle Scholar
  5. 5.
    Brown, J.D., Lau, S.R., York Jr., J.W.: Phys. Rev. D 55, 1977 (1997).  https://doi.org/10.1103/PhysRevD.55.1977 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Booth, I.S., Mann, R.B.: Phys. Rev. D 59(6), 064021 (1999).  https://doi.org/10.1103/PhysRevD.59.064021 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Booth, I.S.: A Quasilocal Hamiltonian for Gravity with Classical and Quantum Applications. Ph.D. thesis, University of Waterloo, Waterloo (2000)Google Scholar
  8. 8.
  9. 9.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, New York (1973)Google Scholar
  10. 10.
    York, J.W.: Phys. Rev. Lett. 28, 1082 (1972).  https://doi.org/10.1103/PhysRevLett.28.1082 ADSCrossRefGoogle Scholar
  11. 11.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977).  https://doi.org/10.1103/PhysRevD.15.2752 ADSCrossRefGoogle Scholar
  12. 12.
    York, J.W.: Found. Phys. 16(3), 249 (1986).  https://doi.org/10.1007/BF01889475 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Frankel, T.: The Geometry of Physics: An Introduction. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics. American Mathematical Society, Providence (2006)Google Scholar
  17. 17.
    Nitsche, J.C.: Lectures on Minimal Surfaces, vol. 1. Cambridge University Press, New York (1989)zbMATHGoogle Scholar
  18. 18.
    Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2010)zbMATHGoogle Scholar
  19. 19.
    Arnowitt, R., Deser, S., Misner, C.W.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962).  https://doi.org/10.1007/s10714-008-0661-1 Google Scholar
  20. 20.
    Gourgoulhon, E.: 3+1 Formalism in General Relativity: Bases of Numerical Relativity. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Peres, A.: Il Nuovo Cimento (1955-1965) 26(1), 53 (1962).  https://doi.org/10.1007/BF02754342
  22. 22.
    Gerlach, U.H.: Phys. Rev. 177, 1929 (1969).  https://doi.org/10.1103/PhysRev.177.1929 ADSCrossRefGoogle Scholar
  23. 23.
    Rovelli, C.: Dynamics without time for quantum gravity: covariant hamiltonian formalism and Hamilton–Jacobi equation on the space G. In: Springer, Berlin (2004), pp. 36–62.  https://doi.org/10.1007/978-3-540-40968-7_4
  24. 24.
    Weiss, P.: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 156(887), 192 (1936).  https://doi.org/10.1098/rspa.1936.0143. http://rspa.royalsocietypublishing.org/content/156/887/192
  25. 25.
    Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principles. Dover Publications, Mineola (1989)zbMATHGoogle Scholar
  26. 26.
    Rund, H.: The Hamilton–Jacobi Theory in the Calculus of Variations: Its Role in Mathematics and Physics. Van Nostrand, New York (1966)zbMATHGoogle Scholar
  27. 27.
    Bojowald, M.: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Kiefer, C.: Quantum Gravity. International Series of Monographs on Physics. Oxford University Press, Oxford (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
  31. 31.
    Sorkin, R.: Phys. Rev. D 23, 565 (1981).  https://doi.org/10.1103/PhysRevD.23.565 ADSCrossRefGoogle Scholar
  32. 32.
    Hartle, J.B., Sorkin, R.: Gen. Relativ. Gravit. 13(6), 541 (1981).  https://doi.org/10.1007/BF00757240 ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    Brill, D., Hayward, G.: Phys. Rev. D 50, 4914 (1994).  https://doi.org/10.1103/PhysRevD.50.4914 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Parattu, K., Chakraborty, S., Majhi, B.R., Padmanabhan, T.: Gen. Relativ. Gravit. 48(7), 94 (2016).  https://doi.org/10.1007/s10714-016-2093-7 ADSCrossRefGoogle Scholar
  36. 36.
    Parattu, K., Chakraborty, S., Padmanabhan, T.: Eur. Phys. J. C 76(3), 129 (2016).  https://doi.org/10.1140/epjc/s10052-016-3979-y ADSCrossRefGoogle Scholar
  37. 37.
    Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Phys. Rev. D 94(8), 084046 (2016).  https://doi.org/10.1103/PhysRevD.94.084046 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Jubb, I., Samuel, J., Sorkin, R.D., Surya, S.: Class. Quantum Gravity 34(6), 065006 (2017). http://stacks.iop.org/0264-9381/34/i=6/a=065006
  39. 39.
    Chakraborty, S.: Boundary Terms of the Einstein–Hilbert Action, pp. 43–59. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51700-1_5 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theory Group, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations