Fermi field and Dirac oscillator in a Som–Raychaudhuri space-time

  • Marc de Montigny
  • Soroush Zare
  • Hassan Hassanabadi
Research Article
  • 40 Downloads

Abstract

We investigate the relativistic dynamics of a Dirac field in the Som–Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som–Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov–Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som–Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

Keywords

Dirac equation Curved space-time Som–Raychaudhuri metric Nikiforov–Uvarov method 

Notes

Acknowledgements

Marc de Montigny acknowledges the Natural Sciences and Engineering Research Council (NSERC) of Canada for partial financial support (Grant Number RGPIN-2016-04309). We thank the referees for a thorough reading of our manuscript and for constructive suggestions.

References

  1. 1.
    Sagnac, M.G.: C. R. Acad. Sci. (Paris) 157, 708 (1913)Google Scholar
  2. 2.
    Sakurai, J.J.: Phys. Rev. D 21, 2993 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Anandan, J.: Phys. Rev. D 15, 1448 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    Iyer, B.R.: Phys. Rev. D 26, 1900 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Post, E.J.: Rev. Mod. Phys. 39, 475 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    Anandan, J.: Phys. Rev. D 24, 338 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    Cui, S.-M., Xu, H.-H.: Phys. Rev. A 44, 3343 (1991)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cui, S.-M.: Phys. Rev. A 45, 5255 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Page, L.A.: Phys. Rev. Lett. 35, 543 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    Werner, S.A., Staudenmann, J.-L., Colella, R.: Phys. Rev. Lett. 42, 1103 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Mashhoon, B.: Phys. Rev. Lett. 61, 2639 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Hehl, F.W., Ni, W.-T.: Phys. Rev. D 42, 2045 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    Bakke, K., Furtado, C.: Phys. Rev. D 80, 024033 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Aharonov, Y., Carmi, G.: Found. Phys. 3, 493 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    Fischer, U.R., Schopohl, N.: Europhys. Lett. 54, 502 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Li-Hua, Lu, Li, You-Quan: Phys. Rev. A 76, 023410 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Shen, J.-Q., He, S.-L.: Phys. Rev. B 68, 195421 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Shen, J.Q., He, S., Zhuang, F.: Eur. Phys. J. D 33, 35 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Ambruş, V.E.: Phys. Lett. B 771, 151 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Ambruş, V.E., Winstanley, E.: Phys. Lett. B 734, 296 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Ambruş, V.E., Winstanley, E.: AIP Conf. Proc. 1695, 020011 (2015)CrossRefGoogle Scholar
  22. 22.
    Kent, C., Winstanley, E.: Phys. Lett. B 740, 188 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Merlin, R.: Phys. Lett. A 181, 421 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Vignale, G., Mashhoon, B.: Phys. Lett. A 197, 444 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    Bakke, K.: Phys. Lett. A 374, 3143 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Bakke, K.: Phys. Lett. A 374, 4642 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Dantas, L., Furtado, C., Silva Metto, A.L.: Phys. Lett. A 379, 11 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Tuai, C.H., Neilson, D.: Phys. Rev. A 37, 619 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    Mota, H.F., Bakke, K.: Phys. Rev. D 89, 027702 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Castro, L.B.: Eur. Phys. J. C 76, 61 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)ADSCrossRefGoogle Scholar
  32. 32.
    Gürses, M., Karasu, A., Sarioğlu, Ö.: Class. Quant. Grav. 22, 1527 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Gürses, M., Sarioğlu, Ö.: Class. Quant. Grav. 22, 4699 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Gleiser, R.J., Gürses, M., Karasu, A., Sarioğlu, Ö.: Class. Quant. Grav. 23, 2653 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Rebouças, M.J., Tiomno, J.: Phys. Rev. D 28, 1251 (1983)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Kanti, P., Vayonakis, C.E.: Phys. Rev. D 60, 103519 (1999)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Romano, A.E., Goebel, C.: Gen. Relativ. Grav. 35, 1857 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Barrow, J.D., Dabrowski, M.P.: Phys. Rev. D 58, 103502 (1998)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Hawking, S.: Phys. Rev. D 46, 603 (1992)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Rebouças, M., Åman, M., Teixeira, A.F.F.: J. Math. Phys. 27, 1370 (1985)ADSCrossRefGoogle Scholar
  41. 41.
    Calvão, M.O., Rebouças, M.J., Teixeira, A.F.F., Silva Jr., W.M.: J. Math. Phys. 29, 1127 (1988)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Gürses, M.: Gen. Relativ. Grav. 41, 31 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Jacobson, T., Mattingly, D.: Phys. Rev. D 64, 024028 (2001)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Jacobson, T.: Proc. Sci. from quantum to emergent gravity: theory and phenomenology PoS(QG-Ph)020, 18 pp (2007)Google Scholar
  45. 45.
    Balakin, A.B., Popov, V.A.: J. Cosm. Astropart. Phys. 025, 29 (2017)Google Scholar
  46. 46.
    Harmark, T., Takayanagi, T.: Nucl. Phys. B 662, 3 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  48. 48.
    Marchuk, N.G.: Nuovo Cim. 115 B, 11 (2000)Google Scholar
  49. 49.
    Landau, L.D., Lifschitz, E.M.: Quantum Mechanics. Pergamon, Oxford (1981)MATHGoogle Scholar
  50. 50.
    Marques, G.A., Bezerra, V.B.: Phys. Rev. D 66, 105011 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Bausch, R., Schmitz, R., Turski, Ł.A.: Phys. Rev. Lett. 80, 2257 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Aurell, E.: J. Phys. A Math. Gen. 32, 571 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    Kawamura, K.: Zeit. Physik B 29, 101 (1978)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Furtado, C., Bezerra, V.B., Moraes, F.: Phys. Lett. A 289, 160 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    Furtado, C., Bezerra, V.B., Moraes, F.: Europhys. Lett. 52, 1 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    Furtado, C., Moraes, F.: Europhys. Lett. 45, 279 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    Furtado, C., Cunha, B.G.C.da, Moraes, F., Mello, E.R.Bezerra de, Bezzerra, V.B.: Phys. Lett. A 195, 90 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    Som, M.M., Raychaudhuri, A.K.: Proc. R. Soc. A 304, 81 (1968)ADSCrossRefGoogle Scholar
  59. 59.
    Shaikh, A.A., Kundu, H.: J. Geom. (2016).  https://doi.org/10.1007/s00022-016-0355-x Google Scholar
  60. 60.
    Moshinsky, M., Szczepaniak, A.: J. Phys. A Math. Gen. 22, L817 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    Itô, D., Mori, K., Carriere, E.: Nuov. Cim. A 51, 1119 (1967)ADSCrossRefGoogle Scholar
  62. 62.
    Cook, P.A.: Lett. Nuovo Cimento 1, 419 (1971)CrossRefGoogle Scholar
  63. 63.
    Quesne, C.: J. Phys. A Math. Theor. 50, 081001 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    Bakke, K.: Eur. Phys. J. Plus 127, 82 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Bakke, K., Furtado, C.: Ann. Phys. 336, 489 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    Bakke, K.: Gen. Relativ. Grav. 45, 1847 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    Wang, Z., Long, Z.-W., Wu, M.-L.: Eur. Phys. J. Plus 130, 36 (2015)CrossRefGoogle Scholar
  68. 68.
    Carvalho, J., de Carvalho, A.M.M., Furtado, C.: Eur. Phys. J. C 74, 2935 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    Figueiredo, B.D.B., Soares, I.Damião, Tiomno, J.: Class. Quant. Grav. 9, 1593 (1992)ADSCrossRefGoogle Scholar
  70. 70.
    Garcia, G.Q., de Oliveira, J.R.S., Bakke, K., Furtado, C.: Eur. Phys. J. Plus 132, 123 (2017)CrossRefGoogle Scholar
  71. 71.
    Clifton, T., Barrow, J.: Phys. Rev. D 72, 123003 (2005)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Cotaescu, I.I.: J. Phys. A Math. Gen. 33, 9177 (2000)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Das, S., Gegenberg, J.: Gen. Relativ. Gravit. 40, 2115 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    Bakke, K., Furtado, C.: Phys. Lett. A 376, 1269 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1988)CrossRefMATHGoogle Scholar
  76. 76.
    Tezcan, C., Sever, R.: Int. J. Theor. Phys. 48, 337 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculté Saint-JeanUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations