Advertisement

A point mass and continuous collapse to a point mass in general relativity

  • Alexander N. Petrov
Research Article

Abstract

An original way of presentation of the Schwarzschild black hole in the form of a point-like mass with making the use of the Dirac \(\delta \)-function, including a description of a continuous collapse to such a point mass, is given. A maximally generalized description restricted by physically reasonable requirements is developed. A so-called field-theoretical formulation of general relativity, being equivalent to the standard geometrical presentation of general relativity, is used. All of the dynamical fields, including the gravitational field, are considered as propagating in a background (curved or flat) spacetime. Namely these properties allow us to present a non-contradictive picture of the point mass description. The results can be useful for studying the structure of the black hole true singularities and could be developed for practical calculations in models with black holes.

Keywords

General relativity Black holes Regular collapse True singularity 

References

  1. 1.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1975)zbMATHGoogle Scholar
  2. 2.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, San Francisco (1973)Google Scholar
  3. 3.
    Balasin, H., Nachbagauer, H.: Class. Quantum Grav. 10, 2271 . Preprint arXiv:gr-qc/9305009 (1993)
  4. 4.
    Pantoja, N.R., Rago, H.: Int. J. Mod. Phys. D 11(9), 1479 . Preprint arXiv:gr-qc/0009053 (2002)
  5. 5.
    Heinzle, J.M., Steinbauer, R.: J. Math Phys. 43(3), 1493 . Preprint arXiv:gr-qc/0112047) (2002)
  6. 6.
    Abbott, B.P., et al.: (LIGO-Virgo Scientific Collaborations), Phys. Rev. Lett. 116(31 May 2016), 221101 . Preprint: arXiv:1602.03841 [gr-qc] (2016)
  7. 7.
    Abbott, B.P., et al.: (LIGO-Virgo Scientific Collaborations), Phys. Rev. Lett. 116(15 June 2016), 241103 . Preprint: arXiv:1606.04855 [gr-qc] (2016)
  8. 8.
    Abbott, B.P., et al.: (LIGO-Virgo Scientific Collaborations), Phys. Rev. X 6(4), 041015 . Preprint: arXiv:1606.04856 [gr-qc] (2016)
  9. 9.
    Damour, T., Jaranowski, P., Schäfer, G.: Phys. Lett. B 513(1–2), 147 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Schäfer, G.: Binary black holes and gravitational wave production: post-Newtonian analytic treatment. In: Fernández-Jambrina, L., González-Romero, L.M. (eds.) Current Trends in Relativistic Astrophysics. Lecture Notes in Physics, vol. 617. Springer, Berlin (2003)Google Scholar
  11. 11.
    Schäfer, G.: Post-Newtonian methods: analytic results on the binary problem. In: Blanchet, L., Spallicci, A., Whiting, B. (eds.) Mass and motion in General Relativity, pp. 167–210. Springer, Dordrecht (2011)Google Scholar
  12. 12.
    Blanchet, L.: Living Rev. Relativ. 17(2), 1. http://www.livingreviews.org/lrr-2014-2 (2014)
  13. 13.
    Narlikar, J.V.: Random walk. In: Dadhich, N., Krishna Rao, J., Narlikar, J.V., Vishevara, C.V. (eds.) Relativity and Cosmology, pp. 171–183. Viley Eastern Limited, New Delhi (1985)Google Scholar
  14. 14.
    Grishchuk, L.P., Petrov, A.N., Popova, A.D.: Commun. Math. Phys. 94(3), 379 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    Popova, A., Petrov, A.: Int. J. Mod. Phys. A 3(11), 2651 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Petrov, A.N.: Class. Quantum. Grav. 10(12), 2663 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Petrov, A.N.: In: Christiansen, M.N., Rasmussen, T.K. (eds.) Classical and Quantum Gravity Research, pp. 79–160. Nova Science Publishers, New York. Preprint arXiv:0705.0019 [gr-qc] (2008)
  18. 18.
    Petrov, A.N., Kopeikin, S.M., Lompay, R.R., Tekin, B.: Metric Theories of Gravity: Perturbations and Conservation Laws. De Gruyter, Germany (2017)CrossRefzbMATHGoogle Scholar
  19. 19.
    Geroch, R., Traschen, J.: Phys. Rev. D 36(15 August), 1017 (1987)Google Scholar
  20. 20.
    Colombeau, J.: J. Math. Anal. Appl. 94(1), 96 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fiziev, P.: The gravitational field of massive non-charged point source in general relativity . Preprint arXiv:gr-qc/0412131) (2004)
  22. 22.
    Goswami, R., Joshi, P.S., Vaz, C., L, W.: Phys. Rev. D 70(8), 084038 . Preprint arXiv:gr-qc/0410041 (2004)
  23. 23.
    Cadoni, M., Magnemi, S.: Mod. Phys. Lett. A 20(38), 2919 . Preprint arXiv:gr-qc/0503059 (2005)
  24. 24.
    Lundgren, A.P., Schmekel, B.S., York, J.W.: Phys. Rev. D 75(8), 084026 . Preprint arXiv:gr-qc/0610088 (2007)
  25. 25.
    Brown, J.D., York, J.W.: Phys. Rev. D 47, 1407 (1993)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Katanaev, M.O.: Gen. Relativ. Grav. 45(10), 1861 . Preprint arXiv:1207.3481 [gr-qc] (2013)
  27. 27.
    Pitts, J.B., Schieve, W.C.: Found. Phys. 34(2), 211 . Preprint arXiv:gr-qc/0406102 (2004)
  28. 28.
    Petrov, A.N., Narlikar, J.V.: Found. Phys. 26(9), 1201 (1996)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Petrov, A.N.: Found. Phys. Lett. 18(5), 477 . Preprint arXiv:gr-qc/0503082 (2005)
  30. 30.
    Deser, S.: Gen. Relativ. Grav. 1, 9 . Preprint arXiv:gr-qc/0411023(1970)
  31. 31.
    Gelfand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1. Properties and Operations. Academic Press, New York (1964)Google Scholar
  32. 32.
    Bizon, P., Malec, E.: Class. Quantum Grav. 3, L123 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    O’Murchadha, N.: J. Math. Phys. 27(8), 2111 (1986)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kennefick, D., O’Murchadha, N.: Class. Quantum. Grav. 12(1), 149 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    Soloviev, V.O.: Theor. Math. Phys 65, 1240 (1985)CrossRefGoogle Scholar
  36. 36.
    Petrov, A.N.: Int. J. Mod. Phys. D 4(4), 451 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    Petrov, A.N.: Int. J. Mod. Phys. D 6(2), 239 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Eddington, A.S.: Nature 113(February 9), 192 (1924)Google Scholar
  39. 39.
    Finkelstein, D.: Phys. Rev 110(4), 965 (1958)ADSCrossRefGoogle Scholar
  40. 40.
    Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56(September 1), 455 (1939)Google Scholar
  41. 41.
    Kanai, Y., Siino, M., Hosoya, A.: Prog. Theor. Phys. 125(May 1), 1053 Preprint arXiv:1008.0470 [gr-qc] (2011)
  42. 42.
    Peinlevé, P.: C. R. Acad. Sci. (Paris) 173(October 24), 677 (1921)Google Scholar
  43. 43.
    Gullstrand, A.: Arkiv. Mat. Astron. Fys. 16(8), 1 (1922)Google Scholar
  44. 44.
    Hamilton, A.J.S., Lisle, J.P.: Am. J. Phys. 76(6), 519 . Preprint arXiv:gr-qc/0411060 (2008)
  45. 45.
    Lin, C.Y., Soo, C.: Phys. Lett. B 671(4-5), 493 . Preprint arXiv:0810.2161 [gr-qc] (2009)
  46. 46.
    Jan, X., Molina, A.: Preprint arXiv:gr-qc/0411060 (2016)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow MV Lomonosov State UniversityMoscowRussia

Personalised recommendations