Bouncing cosmology inspired by regular black holes

  • J. C. S. NevesEmail author
Research Article


In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes a universe almost homogeneous only for large scales, such as our observable universe.


Bouncing cosmology Singularity Regular black holes Cosmological principle 



This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Grant No. 2013/03798-3). I would like to thank Alberto Saa and an anonymous referee for comments and suggestions.


  1. 1.
    Novello, M., Perez Bergliaffa, S.E.: Bouncing cosmologies. Phys. Rept. 463, 127 (2008)CrossRefGoogle Scholar
  2. 2.
    Joshi, P.S.: Spacetime singularities. In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime, p. 409. Springer, Berlin (2014)Google Scholar
  3. 3.
    Riess, A.G., et al.: (Supernova search team collaboration): observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Perlmutter, S., et al.: (Supernova cosmology project collaboration): measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bardeen, J. M.: Non-singular general-relativistic collapse. In: Conference proceedings of GR5, p. 174, Tbilisi, URSS (1968)Google Scholar
  6. 6.
    Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. In: Proceedings of BH2, dynamics and thermodynamics of black holes and naked singularities, Milano, Italy (2007)Google Scholar
  7. 7.
    Lemos, J.P.S., Zanchin, V.T.: Regular black holes: electrically charged solutions, Reissner–Nordström outside a de sitter core. Phys. Rev. D 83, 124005 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Sakharov, A.D.: Sov. Phys. JETP 22, 241 (1966)ADSGoogle Scholar
  9. 9.
    Gliner, E.B.: Sov. Phys. JETP 22, 378 (1966)ADSGoogle Scholar
  10. 10.
    Hayward, S.A.: Formation and evaporation of non-singular black holes. Phys. Rev. Lett. 96, 031103 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Neves, J.C.S.: Deforming regular black holes. Int. J. Mod. Phys. A 32, 1750112 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Smailagic, A., Spallucci, E.: “Kerrr” black hole: the lord of the string. Phys. Lett. B 688, 82 (2010)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Toshmatov, B., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Rotating regular black hole solution. Phys. Rev. D 89, 104017 (2014)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Azreg-Ainou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90, 064041 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Neves, J.C.S.: Note on regular black holes in a brane world. Phys. Rev. D 92, 084015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lehners, J.L.: Ekpyrotic and cyclic cosmology. Phys. Rept. 465, 223 (2008)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Brandenberger, R. H.: The matter bounce alternative to inflationary cosmology. arXiv:1206.4196
  21. 21.
    Ijjas, A., Steinhardt, P.J.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, K.K.S., Lahav, O., Rees, M.J.: The large-scale smoothness of the universe. Nature 397, 225 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Bolejko, K., Célérier, M.N., Krasinski, A.: Inhomogeneous cosmological models: exact solutions and their applications. Class. Quantum Grav. 28, 164002 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ruiz, E., Senovilla, J.M.M.: General class of inhomogeneous perfect-fluid solutions. Phys. Rev. D 45, 1995 (1992)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Senovilla, J.M.M.: New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity. Phys. Rev. Lett. 64, 2219 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nemiroff, R.J., Joshi, R., Patla, B.R.: An exposition on friedmann cosmology with negative energy densities. JCAP 1506, 006 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hernandez Jr., W.C.: Material sources for the kerr metric. Phys. Rev. 159, 1070 (1967)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, C.W., Song, J.: A proposed scale-dependent cosmology for the inhomogeneous cosmology. Int. J. Mod. Phys. D 5, 293 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  30. 30.
    Olmo, G.J., Rubiera-Garcia, D., Sanchez-Puente, A.: Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D 92, 044047 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Matemática, Estatística e Computação CientíficaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations