Advertisement

Bouncing cosmology inspired by regular black holes

  • J. C. S. Neves
Research Article

Abstract

In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes a universe almost homogeneous only for large scales, such as our observable universe.

Keywords

Bouncing cosmology Singularity Regular black holes Cosmological principle 

Notes

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Grant No. 2013/03798-3). I would like to thank Alberto Saa and an anonymous referee for comments and suggestions.

References

  1. 1.
    Novello, M., Perez Bergliaffa, S.E.: Bouncing cosmologies. Phys. Rept. 463, 127 (2008)CrossRefGoogle Scholar
  2. 2.
    Joshi, P.S.: Spacetime singularities. In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime, p. 409. Springer, Berlin (2014)Google Scholar
  3. 3.
    Riess, A.G., et al.: (Supernova search team collaboration): observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Perlmutter, S., et al.: (Supernova cosmology project collaboration): measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bardeen, J. M.: Non-singular general-relativistic collapse. In: Conference proceedings of GR5, p. 174, Tbilisi, URSS (1968)Google Scholar
  6. 6.
    Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. In: Proceedings of BH2, dynamics and thermodynamics of black holes and naked singularities, Milano, Italy (2007)Google Scholar
  7. 7.
    Lemos, J.P.S., Zanchin, V.T.: Regular black holes: electrically charged solutions, Reissner–Nordström outside a de sitter core. Phys. Rev. D 83, 124005 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Sakharov, A.D.: Sov. Phys. JETP 22, 241 (1966)ADSGoogle Scholar
  9. 9.
    Gliner, E.B.: Sov. Phys. JETP 22, 378 (1966)ADSGoogle Scholar
  10. 10.
    Hayward, S.A.: Formation and evaporation of non-singular black holes. Phys. Rev. Lett. 96, 031103 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Neves, J.C.S.: Deforming regular black holes. Int. J. Mod. Phys. A 32, 1750112 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Smailagic, A., Spallucci, E.: “Kerrr” black hole: the lord of the string. Phys. Lett. B 688, 82 (2010)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Toshmatov, B., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Rotating regular black hole solution. Phys. Rev. D 89, 104017 (2014)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Azreg-Ainou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90, 064041 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Neves, J.C.S.: Note on regular black holes in a brane world. Phys. Rev. D 92, 084015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lehners, J.L.: Ekpyrotic and cyclic cosmology. Phys. Rept. 465, 223 (2008)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Brandenberger, R. H.: The matter bounce alternative to inflationary cosmology. arXiv:1206.4196
  21. 21.
    Ijjas, A., Steinhardt, P.J.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, K.K.S., Lahav, O., Rees, M.J.: The large-scale smoothness of the universe. Nature 397, 225 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Bolejko, K., Célérier, M.N., Krasinski, A.: Inhomogeneous cosmological models: exact solutions and their applications. Class. Quantum Grav. 28, 164002 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ruiz, E., Senovilla, J.M.M.: General class of inhomogeneous perfect-fluid solutions. Phys. Rev. D 45, 1995 (1992)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Senovilla, J.M.M.: New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity. Phys. Rev. Lett. 64, 2219 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nemiroff, R.J., Joshi, R., Patla, B.R.: An exposition on friedmann cosmology with negative energy densities. JCAP 1506, 006 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hernandez Jr., W.C.: Material sources for the kerr metric. Phys. Rev. 159, 1070 (1967)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, C.W., Song, J.: A proposed scale-dependent cosmology for the inhomogeneous cosmology. Int. J. Mod. Phys. D 5, 293 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  30. 30.
    Olmo, G.J., Rubiera-Garcia, D., Sanchez-Puente, A.: Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D 92, 044047 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Matemática, Estatística e Computação CientíficaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations