Description of the evolution of inhomogeneities on a dark matter halo with the Vlasov equation

  • Paola Domínguez-FernándezEmail author
  • Erik Jiménez-Vázquez
  • Miguel Alcubierre
  • Edison Montoya
  • Darío Núñez
Research Article


We use a direct numerical integration of the Vlasov equation in spherical symmetry with a background gravitational potential to determine the evolution of a collection of particles in different models of a galactic halo in order to test its stability against perturbations. Such collection is assumed to represent a dark matter inhomogeneity which is represented by a distribution function defined in phase-space. Non-trivial stationary states are obtained and determined by the virialization of the system. We describe some features of these stationary states by means of the properties of the final distribution function and final density profile. We compare our results using the different halo models and find that the NFW halo model is the most stable of them, in the sense that an inhomogeneity in this halo model requires a shorter time to virialize.


Cosmology Dark matter Numerical methods 



This work was partially supported by DGAPA-UNAM Grant IN103514, by CONACYT Network Project 280908 “Agujeros Negros y Ondas Gravitatorias”, and by Conacyt Grant Fronteras 281.


  1. 1.
    MarrodÃąn Undagoitia, T., Rauch, L.: Dark matter direct-detection experiments. J. Phys. G43(1), 013001 (2016). doi: 10.1088/0954-3899/43/1/013001 ADSCrossRefGoogle Scholar
  2. 2.
    Akerib, D.S., et al.: The large underground xenon (LUX) experiment. Nucl. Instrum. Methods A704, 111 (2013). doi: 10.1016/j.nima.2012.11.135 ADSCrossRefGoogle Scholar
  3. 3.
    Bernabei, R., et al.: The DAMA/LIBRA apparatus. Nucl. Instrum. Methods A592, 297 (2008). doi: 10.1016/j.nima.2008.04.082 ADSCrossRefGoogle Scholar
  4. 4.
    Akimov, D.Y., et al.: The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning. Astropart. Phys. 27, 46 (2007). doi: 10.1016/j.astropartphys.2006.09.005 ADSCrossRefGoogle Scholar
  5. 5.
    Aprile, E., Angle, J., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., Brusov, P., Coelho, L.C.C., Dahl, C.E., DeViveiros, L., Ferella, A.D., Fernandes, L.M.P., Fiorucci, S., Gaitskell, R.J., Giboni, K.L., Gomez, R., Hasty, R., Kastens, L., Kwong, J., Lopes, J.A.M., Madden, N., Manalaysay, A., Manzur, A., McKinsey, D.N., Monzani, M.E., Ni, K., Oberlack, U., Orboeck, J., Orlandi, D., Plante, G., Santorelli, R., dos Santos, J.M.F., Shagin, P., Shutt, T., Sorensen, P., Schulte, S., Tatananni, E., Winant, C., Yamashita, M.: Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 34, 679 (2011). doi: 10.1016/j.astropartphys.2011.01.006 ADSCrossRefGoogle Scholar
  6. 6.
    Barreto, J., et al.: Direct search for low mass dark matter particles with CCDs. Phys. Lett. B 711, 264 (2012). doi: 10.1016/j.physletb.2012.04.006 ADSCrossRefGoogle Scholar
  7. 7.
    Chavarria, A.E., et al.: DAMIC at SNOLAB. Phys. Procedia 61, 21 (2015). doi: 10.1016/j.phpro.2014.12.006 ADSCrossRefGoogle Scholar
  8. 8.
    Aguilar-Arevalo, A., et al.: First direct detection constraints on eV-scale hidden-photon dark matter with DAMIC at SNOLAB. Phys. Rev. Lett. (2016) (submitted to) Google Scholar
  9. 9.
    Aguilar-Arevalo, A., et al.: Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94(8), 082006 (2016). doi: 10.1103/PhysRevD.94.082006 ADSCrossRefGoogle Scholar
  10. 10.
    Agnese, R., et al.: Low-Mass Dark Matter Search with CDMSlite. Phys. Rev. D (2017) (submitted to) Google Scholar
  11. 11.
    de Lima Rodrigues, R.: The quantum mechanics SUSY algebra: an introductory review (2002)Google Scholar
  12. 12.
    Cabral-Rosetti, L.G., Mondragon, M., Reyes Perez, E.: Toroidal dipole moment of the lightest neutralino in the MSSM. J. Phys. Conf. Ser. 315, 012007 (2011). doi: 10.1088/1742-6596/315/1/012007 CrossRefGoogle Scholar
  13. 13.
    Biswas, S., Gabrielli, E., Heikinheimo, M., Mele, B.: Dark-photon searches via Higgs-boson production at the LHC. Phys. Rev. D 93(9), 093011 (2016). doi: 10.1103/PhysRevD.93.093011 ADSCrossRefGoogle Scholar
  14. 14.
    Barranco, J., Bernal, A., Núñez, D.: Dark matter equation of state from rotational curves of galaxies. Mon. Not. R. Astron. Soc. 449(1), 403 (2015). doi: 10.1093/mnras/stv302 ADSCrossRefGoogle Scholar
  15. 15.
    Matos, T., Guzman, F.S., Urena-Lopez, L.A.: Scalar field as dark matter in the universe. Class. Quantum Gravity 17, 1707 (2000). doi: 10.1088/0264-9381/17/7/309 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Matos, T., Urena-Lopez, L.A.: Scalar field dark matter, cross section and Planck-scale physics. Phys. Lett. B 538, 246 (2002). doi: 10.1016/S0370-2693(02)02002-6 ADSCrossRefGoogle Scholar
  17. 17.
    Matos, T., Bernal, A., Nunez, D.: Flat central density profiles from scalar field dark matter halo. Rev. Mex. Astron. Astrofis. 44, 149 (2008)ADSGoogle Scholar
  18. 18.
    Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996). doi: 10.1086/177173 ADSCrossRefGoogle Scholar
  19. 19.
    Harker, G., Cole, S., Helly, J., Frenk, C., Jenkins, A.: A marked correlation function analysis of halo formation times in the millennium simulation. Mon. Not. R. Astron. Soc. 367, 1039 (2006). doi: 10.1111/j.1365-2966.2006.10022.x ADSCrossRefGoogle Scholar
  20. 20.
    Athanassoula, E., Fady, E., Lambert, J.C., Bosma, A.: Optimal softening for force calculations in collisionless N-body simulations. Mon. Not. R. Astron. Soc. 314(3), 475 (2000). doi: 10.1046/j.1365-8711.2000.03316.x ADSCrossRefGoogle Scholar
  21. 21.
    Dehnen, W.: Towards optimal softening in three-dimensional N-body codes I. Minimizing the force error. Mon. Not. R. Astron. Soc. 324(2), 273 (2001). doi: 10.1046/j.1365-8711.2001.04237.x ADSCrossRefGoogle Scholar
  22. 22.
    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Hilger, Bristol (1988).
  23. 23.
    Bagla, J.S.: Cosmological N-body simulation: techniques, scope and status. Curr. Sci. 88, 1088 (2005)ADSGoogle Scholar
  24. 24.
    Binney, J., Tremaine, S.: Galactic dynamics, 2nd edn. Princeton University Press, Princeton, NJ, USA (2008).
  25. 25.
    Colombi, S., Sousbie, T., Peirani, S., Plum, G., Suto, Y.: Vlasov versus N-body: the Henon sphere. Mon. Not. R. Astron. Soc. 450(4), 3724 (2015). doi: 10.1093/mnras/stv819 ADSCrossRefGoogle Scholar
  26. 26.
    Andreasson, H.: The Einstein–Vlasov system/kinetic theory. Living Rev. Rel. 8, 2 (2005). doi: 10.12942/lrr-2005-2 CrossRefGoogle Scholar
  27. 27.
    Shapiro, S.L., Teukolsky, S.A.: Black holes, white dwarfs, and neutron stars: the physics of compact objects. Research supported by the National Science Foundation, Wiley, New York (1983).
  28. 28.
    Domínguez-Fernández, P.: On particle dynamics: Vlasov equation and dark matter. Bachelor thesis, UNAM-Mexico (2015)Google Scholar
  29. 29.
    Jiménez-Vázquez, E.: Numerical simulation of the Vlasov–Poisson system in spherical symmetry. Bachelor thesis, UNAM-Mexico (2016)Google Scholar
  30. 30.
    Kuzio de Naray, R., McGaugh, S.S., Mihos, J.C.: Constraining the NFW potential with observations and modeling of LSB galaxy velocity fields. Astrophys. J. 692, 1321 (2009). doi: 10.1088/0004-637X/692/2/1321 ADSCrossRefGoogle Scholar
  31. 31.
    Salucci, P., Burkert, A.: Dark matter scaling relations. Astrophys. J. 537, L9 (2000). doi: 10.1086/312747 ADSCrossRefGoogle Scholar
  32. 32.
    Liu, W.H., Fu, Y.N., Deng, Z.G., Huang, J.H.: An equilibrium dark matter halo with the Burkert profile. Publ. Astron. Soc. Jpn. 57, 541 (2005). doi: 10.1093/pasj/57.4.541 ADSCrossRefGoogle Scholar
  33. 33.
    Rubin, V.C., Thonnard, N., Ford Jr., W.K.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471 (1980). doi: 10.1086/158003 ADSCrossRefGoogle Scholar
  34. 34.
    Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel (1992)CrossRefzbMATHGoogle Scholar
  35. 35.
    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Are black holes a serious threat to scalar field dark matter models? Phys. Rev. D 84, 083008 (2011). doi: 10.1103/PhysRevD.84.083008 ADSCrossRefGoogle Scholar
  36. 36.
    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild black holes can wear scalar wigs. Phys. Rev. Lett. 109, 081102 (2012). doi: 10.1103/PhysRevLett.109.081102 ADSCrossRefGoogle Scholar
  37. 37.
    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild scalar wigs: spectral analysis and late time behavior. Phys. Rev. D 89(8), 083006 (2014). doi: 10.1103/PhysRevD.89.083006 ADSCrossRefGoogle Scholar
  38. 38.
    Martin-Garcia, J.M., Gundlach, C.: Selfsimilar spherically symmetric solutions of the massless Einstein–Vlasov system. Phys. Rev. D 65, 084026 (2002). doi: 10.1103/PhysRevD.65.084026 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Akbarian, A., Choptuik, M.W.: Critical collapse in the spherically-symmetric Einstein–Vlasov model. Phys. Rev. D 90(10), 104023 (2014). doi: 10.1103/PhysRevD.90.104023 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Paola Domínguez-Fernández
    • 1
    • 2
    Email author
  • Erik Jiménez-Vázquez
    • 2
  • Miguel Alcubierre
    • 2
  • Edison Montoya
    • 3
  • Darío Núñez
    • 2
  1. 1.Argelander Institut für AstronomieUniversität BonnBonnGermany
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Escuela de FísicaUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations