Description of the evolution of inhomogeneities on a dark matter halo with the Vlasov equation
Abstract
We use a direct numerical integration of the Vlasov equation in spherical symmetry with a background gravitational potential to determine the evolution of a collection of particles in different models of a galactic halo in order to test its stability against perturbations. Such collection is assumed to represent a dark matter inhomogeneity which is represented by a distribution function defined in phase-space. Non-trivial stationary states are obtained and determined by the virialization of the system. We describe some features of these stationary states by means of the properties of the final distribution function and final density profile. We compare our results using the different halo models and find that the NFW halo model is the most stable of them, in the sense that an inhomogeneity in this halo model requires a shorter time to virialize.
Keywords
Cosmology Dark matter Numerical methodsNotes
Acknowledgements
This work was partially supported by DGAPA-UNAM Grant IN103514, by CONACYT Network Project 280908 “Agujeros Negros y Ondas Gravitatorias”, and by Conacyt Grant Fronteras 281.
References
- 1.MarrodÃąn Undagoitia, T., Rauch, L.: Dark matter direct-detection experiments. J. Phys. G43(1), 013001 (2016). doi: 10.1088/0954-3899/43/1/013001 ADSCrossRefGoogle Scholar
- 2.Akerib, D.S., et al.: The large underground xenon (LUX) experiment. Nucl. Instrum. Methods A704, 111 (2013). doi: 10.1016/j.nima.2012.11.135 ADSCrossRefGoogle Scholar
- 3.Bernabei, R., et al.: The DAMA/LIBRA apparatus. Nucl. Instrum. Methods A592, 297 (2008). doi: 10.1016/j.nima.2008.04.082 ADSCrossRefGoogle Scholar
- 4.Akimov, D.Y., et al.: The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning. Astropart. Phys. 27, 46 (2007). doi: 10.1016/j.astropartphys.2006.09.005 ADSCrossRefGoogle Scholar
- 5.Aprile, E., Angle, J., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., Brusov, P., Coelho, L.C.C., Dahl, C.E., DeViveiros, L., Ferella, A.D., Fernandes, L.M.P., Fiorucci, S., Gaitskell, R.J., Giboni, K.L., Gomez, R., Hasty, R., Kastens, L., Kwong, J., Lopes, J.A.M., Madden, N., Manalaysay, A., Manzur, A., McKinsey, D.N., Monzani, M.E., Ni, K., Oberlack, U., Orboeck, J., Orlandi, D., Plante, G., Santorelli, R., dos Santos, J.M.F., Shagin, P., Shutt, T., Sorensen, P., Schulte, S., Tatananni, E., Winant, C., Yamashita, M.: Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 34, 679 (2011). doi: 10.1016/j.astropartphys.2011.01.006 ADSCrossRefGoogle Scholar
- 6.Barreto, J., et al.: Direct search for low mass dark matter particles with CCDs. Phys. Lett. B 711, 264 (2012). doi: 10.1016/j.physletb.2012.04.006 ADSCrossRefGoogle Scholar
- 7.Chavarria, A.E., et al.: DAMIC at SNOLAB. Phys. Procedia 61, 21 (2015). doi: 10.1016/j.phpro.2014.12.006 ADSCrossRefGoogle Scholar
- 8.Aguilar-Arevalo, A., et al.: First direct detection constraints on eV-scale hidden-photon dark matter with DAMIC at SNOLAB. Phys. Rev. Lett. (2016) (submitted to) Google Scholar
- 9.Aguilar-Arevalo, A., et al.: Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94(8), 082006 (2016). doi: 10.1103/PhysRevD.94.082006 ADSCrossRefGoogle Scholar
- 10.Agnese, R., et al.: Low-Mass Dark Matter Search with CDMSlite. Phys. Rev. D (2017) (submitted to) Google Scholar
- 11.de Lima Rodrigues, R.: The quantum mechanics SUSY algebra: an introductory review (2002)Google Scholar
- 12.Cabral-Rosetti, L.G., Mondragon, M., Reyes Perez, E.: Toroidal dipole moment of the lightest neutralino in the MSSM. J. Phys. Conf. Ser. 315, 012007 (2011). doi: 10.1088/1742-6596/315/1/012007 CrossRefGoogle Scholar
- 13.Biswas, S., Gabrielli, E., Heikinheimo, M., Mele, B.: Dark-photon searches via Higgs-boson production at the LHC. Phys. Rev. D 93(9), 093011 (2016). doi: 10.1103/PhysRevD.93.093011 ADSCrossRefGoogle Scholar
- 14.Barranco, J., Bernal, A., Núñez, D.: Dark matter equation of state from rotational curves of galaxies. Mon. Not. R. Astron. Soc. 449(1), 403 (2015). doi: 10.1093/mnras/stv302 ADSCrossRefGoogle Scholar
- 15.Matos, T., Guzman, F.S., Urena-Lopez, L.A.: Scalar field as dark matter in the universe. Class. Quantum Gravity 17, 1707 (2000). doi: 10.1088/0264-9381/17/7/309 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 16.Matos, T., Urena-Lopez, L.A.: Scalar field dark matter, cross section and Planck-scale physics. Phys. Lett. B 538, 246 (2002). doi: 10.1016/S0370-2693(02)02002-6 ADSCrossRefGoogle Scholar
- 17.Matos, T., Bernal, A., Nunez, D.: Flat central density profiles from scalar field dark matter halo. Rev. Mex. Astron. Astrofis. 44, 149 (2008)ADSGoogle Scholar
- 18.Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996). doi: 10.1086/177173 ADSCrossRefGoogle Scholar
- 19.Harker, G., Cole, S., Helly, J., Frenk, C., Jenkins, A.: A marked correlation function analysis of halo formation times in the millennium simulation. Mon. Not. R. Astron. Soc. 367, 1039 (2006). doi: 10.1111/j.1365-2966.2006.10022.x ADSCrossRefGoogle Scholar
- 20.Athanassoula, E., Fady, E., Lambert, J.C., Bosma, A.: Optimal softening for force calculations in collisionless N-body simulations. Mon. Not. R. Astron. Soc. 314(3), 475 (2000). doi: 10.1046/j.1365-8711.2000.03316.x ADSCrossRefGoogle Scholar
- 21.Dehnen, W.: Towards optimal softening in three-dimensional N-body codes I. Minimizing the force error. Mon. Not. R. Astron. Soc. 324(2), 273 (2001). doi: 10.1046/j.1365-8711.2001.04237.x ADSCrossRefGoogle Scholar
- 22.Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Hilger, Bristol (1988). http://adsabs.harvard.edu/abs/1988csup.book.....H
- 23.Bagla, J.S.: Cosmological N-body simulation: techniques, scope and status. Curr. Sci. 88, 1088 (2005)ADSGoogle Scholar
- 24.Binney, J., Tremaine, S.: Galactic dynamics, 2nd edn. Princeton University Press, Princeton, NJ, USA (2008). http://adsabs.harvard.edu/abs/2008gady.book.....B
- 25.Colombi, S., Sousbie, T., Peirani, S., Plum, G., Suto, Y.: Vlasov versus N-body: the Henon sphere. Mon. Not. R. Astron. Soc. 450(4), 3724 (2015). doi: 10.1093/mnras/stv819 ADSCrossRefGoogle Scholar
- 26.Andreasson, H.: The Einstein–Vlasov system/kinetic theory. Living Rev. Rel. 8, 2 (2005). doi: 10.12942/lrr-2005-2 CrossRefGoogle Scholar
- 27.Shapiro, S.L., Teukolsky, S.A.: Black holes, white dwarfs, and neutron stars: the physics of compact objects. Research supported by the National Science Foundation, Wiley, New York (1983). http://adsabs.harvard.edu/abs/1983bhwd.book.....S
- 28.Domínguez-Fernández, P.: On particle dynamics: Vlasov equation and dark matter. Bachelor thesis, UNAM-Mexico (2015)Google Scholar
- 29.Jiménez-Vázquez, E.: Numerical simulation of the Vlasov–Poisson system in spherical symmetry. Bachelor thesis, UNAM-Mexico (2016)Google Scholar
- 30.Kuzio de Naray, R., McGaugh, S.S., Mihos, J.C.: Constraining the NFW potential with observations and modeling of LSB galaxy velocity fields. Astrophys. J. 692, 1321 (2009). doi: 10.1088/0004-637X/692/2/1321 ADSCrossRefGoogle Scholar
- 31.Salucci, P., Burkert, A.: Dark matter scaling relations. Astrophys. J. 537, L9 (2000). doi: 10.1086/312747 ADSCrossRefGoogle Scholar
- 32.Liu, W.H., Fu, Y.N., Deng, Z.G., Huang, J.H.: An equilibrium dark matter halo with the Burkert profile. Publ. Astron. Soc. Jpn. 57, 541 (2005). doi: 10.1093/pasj/57.4.541 ADSCrossRefGoogle Scholar
- 33.Rubin, V.C., Thonnard, N., Ford Jr., W.K.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471 (1980). doi: 10.1086/158003 ADSCrossRefGoogle Scholar
- 34.Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel (1992)CrossRefzbMATHGoogle Scholar
- 35.Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Are black holes a serious threat to scalar field dark matter models? Phys. Rev. D 84, 083008 (2011). doi: 10.1103/PhysRevD.84.083008 ADSCrossRefGoogle Scholar
- 36.Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild black holes can wear scalar wigs. Phys. Rev. Lett. 109, 081102 (2012). doi: 10.1103/PhysRevLett.109.081102 ADSCrossRefGoogle Scholar
- 37.Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild scalar wigs: spectral analysis and late time behavior. Phys. Rev. D 89(8), 083006 (2014). doi: 10.1103/PhysRevD.89.083006 ADSCrossRefGoogle Scholar
- 38.Martin-Garcia, J.M., Gundlach, C.: Selfsimilar spherically symmetric solutions of the massless Einstein–Vlasov system. Phys. Rev. D 65, 084026 (2002). doi: 10.1103/PhysRevD.65.084026 ADSMathSciNetCrossRefGoogle Scholar
- 39.Akbarian, A., Choptuik, M.W.: Critical collapse in the spherically-symmetric Einstein–Vlasov model. Phys. Rev. D 90(10), 104023 (2014). doi: 10.1103/PhysRevD.90.104023 ADSCrossRefGoogle Scholar