Cosmology from a gauge induced gravity

  • F. T. Falciano
  • G. Sadovski
  • R. F. Sobreiro
  • A. A. Tomaz
Research Article

Abstract

The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang–Mills theory in a four-dimensional Euclidian spacetime with \({ SO}(m,n)\) such that \(m+n=5\) and \(m\in \{0,1,2\}\) as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü–Wigner contraction in its infrared sector. As a consequence, the \({ SO}(m,n)\) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein–Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a \(\Lambda \)CDM model. We argue that \({ SO}(m,n)\) induced gravities are promising effective theories to describe the early phase of the universe.

Keywords

Yang–Mills Induced gravity Cosmology 

Notes

Acknowledgements

The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação (PROPPI-UFF) are acknowledge for financial support.

References

  1. 1.
    Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Gravity 21, R53 (2004). arXiv:gr-qc/0404018 ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ashtekar, A., Reuter, M., Rovelli, C.: From general relativity to quantum gravity. arXiv:1408.4336
  3. 3.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective action in quantum gravity. Taylor & Francis, Abingdon (1992). https://books.google.com.br/books?id=NcjI3ydY4e4C
  4. 4.
    Asorey, M., López, J.L., Shapiro, I.L.: Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 12, 5711–5734 (1996). arXiv:hep-th/9610006 ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Shapiro, I.L.: Effective action of vacuum: semiclassical approach. Class. Quant. Gravity 25, 103001 (2007). arXiv:0801.0216 ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Henson, J.: The causal set approach to quantum gravity. arXiv:gr-qc/0601121
  7. 7.
    Loll, R., Ruijl, B.: Locally causal dynamical triangulations in two dimensions. Phys. Rev. D 92(8), 084002 (2015). arXiv:1507.04566 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ambjorn, J., Goerlich, A., Jurkiewicz, J., Loll, R.: Nonperturbative quantum gravity. Phys. Rep. 519, 127–210 (2012). arXiv:1203.3591 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Duff, M.J.: M-theory (the theory formerly known as strings). Int. J. Mod. Phys. A 11, 5623–5642 (1996). arXiv:hep-th/9608117 ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Witten, E.: Anti De Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Polchinski, J.: String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge University Press, Cambridge (2007). www.cambridge.org/9780521672276
  12. 12.
    Hawking, S.W., Israel, W.: General Relativity. Cambridge University Press, Cambridge (1979). http://www.cambridge.org/9780521299282
  13. 13.
    Reuter, M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971–985 (1996). arXiv:hep-th/9605030 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Reuter, M., Wetterich, C.: Search for the QCD ground state. Phys. Lett. B 334, 412–419 (1994). arXiv:hep-ph/9405300 ADSCrossRefGoogle Scholar
  15. 15.
    Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 65016 (2001). arXiv:hep-th/0110054 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, Q., Wu, P., Yu, H.: Emergent scenario in the Einstein–Cartan theory. Phys. Rev. D 91(10), 103502 (2015). arXiv:1504.05284 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Barcelo, C., Visser, M., Liberati, S.: Einstein gravity as an emergent phenomenon? Int. J. Mod. Phys. D 10, 799–806 (2001). arXiv:gr-qc/0106002 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    MacDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38(23), 739–742 (1977)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Stelle, K.S., West, P.C.: Spontaneously broken de Sitter symmetry and the gravitational holonomy group. Phys. Rev. D 21(6), 1466–1488 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Pagels, H.R.: Gravitational gauge fields and the cosmological constant. Phys. Rev. D 29(8), 1690–1698 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Tresguerres, R.: Dynamically broken Anti-de Sitter action for gravity. Int. J. Geom. Methods Mod. Phys. 5(2), 171–183 (2008). arXiv:0804.1129 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tseytlin, A.A.: Poincaré and de Sitter gauge theories of gravity with propagating torsion. Phys. Rev. D 26(12), 3327–3341 (1982)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sobreiro, R.F., Otoya, V.J.V.: Effective gravity from a quantum gauge theory in Euclidean space-time. Physics 24, 4937–4953 (2007). arXiv:0705.2200 MATHGoogle Scholar
  24. 24.
    Mielke, E.W.: Spontaneously broken topological \(SL(5, {\mathbb{R}})\) gauge theory with standard gravity emerging. Phys. Rev. D 83(4), 044004 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Sobreiro, R.F., Tomaz, A.A., Otoya, V.J.V.: de Sitter gauge theories and induced gravities. Eur. Phys. J. C 72, 1–8 (2011). arXiv:1109.0016 Google Scholar
  26. 26.
    Assimos, T.S., Pereira, A.D., Santos, T.R.S., Sobreiro, R.F., Tomaz, A.A., Otoya, V.J.V.: From \(SL(5,{\mathbb{R}})\) Yang–Mills theory to induced gravity. arXiv:1305.1468
  27. 27.
    Utiyama, R.: Invariant theoretical interpretation of interaction. Phys. Rev. 101(5), 1597–1607 (1956)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sciama, D.W.: On the analogy between charge and spin in general relativity. In: Recent Developments in General Relativity, p. 415. Pergamon+PWN, Oxford (1962). http://adsabs.harvard.edu/abs/1962rdgr.book..415S
  29. 29.
    Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2(2), 212–221 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Inonu, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. 39(6), 510–524 (1953)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23(2), 347–356 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    Linde, A.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6), 389–393 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    Starobinsky, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979). http://www.jetpletters.ac.ru/ps/1370/article_20738.shtml
  34. 34.
    Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28(4), 679–693 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    Borde, A., Vilenkin, A.: Eternal inflation and the initial singularity. Phys. Rev. Lett. 72, 3305–3309 (1993). arXiv:gr-qc/9312022 ADSCrossRefGoogle Scholar
  36. 36.
    Calzetta, E., Sakellariadou, M.: Inflation in inhomogeneous cosmology. Phys. Rev. D 45(8), 2802–2805 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Goldwirth, D.S., Piran, T.: Initial conditions for inflation. Phys. Rep. 214(4), 223–292 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    Kofman, L., Linde, A., Mukhanov, V.: Inflationary theory and alternative cosmology. JHEP 10, 57 (2002). arXiv:hep-th/0206088 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Finelli, F., Brandenberger, R.: On the generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase. Phys. Rev. D 65, 103522 (2001). arXiv:hep-th/0112249 ADSCrossRefGoogle Scholar
  40. 40.
    Allen, L.E., Wands, D.: Cosmological perturbations through a simple bounce. Phys. Rev. D 70, 63515 (2004). arXiv:astro-ph/0404441 ADSCrossRefGoogle Scholar
  41. 41.
    Peter, P., Pinto-Neto, N.: Cosmology without inflation. Phys. Rev. D 78, 63506 (2008). arXiv:0809.2022 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Brandenberger, R., Mukhanov, V., Sornborger, A.: A cosmological theory without singularities. Phys. Rev. D 48, 1629–1642 (1993). arXiv:gr-qc/9303001 ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Mukhanov, V., Brandenberger, R.: A nonsingular universe. Phys. Rev. Lett. 68(13), 1969–1972 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Biswas, T., Mazumdar, A., Siegel, W.: Bouncing universes in string-inspired gravity. JCAP 0603, 9 (2005). arXiv:hep-th/0508194 ADSMATHGoogle Scholar
  45. 45.
    Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001). arXiv:gr-qc/0102069 ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Falciano, F.T., Pinto-Neto, N., Struyve, W.: Wheeler-DeWitt quantization and singularities. Phys. Rev. D 91(4), 43524 (2015). arXiv:1501.04181 ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Falciano, F.T., Pereira, R., Pinto-Neto, N., Santini, E.S.: The Wheeler-DeWitt quantization can solve the singularity problem. Phys. Rev. D 86, 63504 (2012). arXiv:1206.4021 CrossRefGoogle Scholar
  48. 48.
    Falciano, F.T., Pinto-Neto, N., Santini, E.S.: An inflationary non-singular quantum cosmological model. Phys. Rev. D 76, 83521 (2007). arXiv:0707.1088 ADSCrossRefGoogle Scholar
  49. 49.
    Pinto-Neto, N., Santini, E.S., Falciano, F.T.: Quantization of Friedmann cosmological models with two fluids: dust plus radiation. Phys. Lett. A 344, 131–143 (2005). arXiv:gr-qc/0505109 ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Sobreiro, R.F., Tomaz, A.A., Otoya, V.J.V.: Induced gravity from gauge theories. J. Phys. Conf. Ser. 453, 12014 (2012). arXiv:1211.5993 CrossRefGoogle Scholar
  51. 51.
    Itzykson, C., Zuber, J.-B., Higgs, P.: Quantum field theory. Phys. Today 37(9), 80 (1984)CrossRefGoogle Scholar
  52. 52.
    Piguet, O., Sorella, S.P.: Algebraic Renormalization, vol. 28 of Lecture Notes in Physics Monographs. Springer, Berlin (1995)Google Scholar
  53. 53.
    Gross, D.J., Wilczek, F.: Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30(26), 1343–1346 (1973)ADSCrossRefGoogle Scholar
  54. 54.
    Politzer, H.D.: Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30(26), 1346–1349 (1973)ADSCrossRefGoogle Scholar
  55. 55.
    Gribov, V.: Quantization of non-Abelian gauge theories. Nucl. Phys. B 139(1–2), 1–19 (1978)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys. 60(1), 7–12 (1978)ADSMathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Capri, M., Fiorentini, D., Guimaraes, M., Mintz, B., Palhares, L., Sorella, S., Dudal, D., Justo, I., Pereira, A., Sobreiro, R.: Exact nilpotent nonperturbative BRST symmetry for the Gribov–Zwanziger action in the linear covariant gauge. Phys. Rev. D 92(4), 045039 (2015). arXiv:1506.06995 ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Zwanziger, D.: Renormalizability of the critical limit of lattice gauge theory by BRS invariance. Nucl. Phys. B 399(2–3), 477–513 (1993)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Maggiore, N., Schaden, M.: Landau gauge within the Gribov horizon. Phys. Rev. D 50(10), 6616–6625 (1993). arXiv:hep-th/9310111 ADSCrossRefGoogle Scholar
  60. 60.
    Dudal, D., Sobreiro, R.F., Sorella, S.P., Verschelde, H.: The Gribov parameter and the dimension two gluon condensate in Euclidean Yang-Mills theories in the Landau gauge. Phys. Rev. D 72(1), 14016 (2005). arXiv:hep-th/0502183 ADSCrossRefGoogle Scholar
  61. 61.
    Dudal, D., Sorella, S.P., Vandersickel, N.: The dynamical origin of the refinement of the Gribov-Zwanziger theory. Phys. Rev. D 84(6), 65039 (2011). arXiv:1105.3371 ADSCrossRefGoogle Scholar
  62. 62.
    Baulieu, L., Sorella, S.P.: Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way. Phys. Lett. B 671(4–5), 481–485 (2008). arXiv:0808.1356 ADSMathSciNetGoogle Scholar
  63. 63.
    Baulieu, L., Capri, M.A.L., Gomez, A.J., Lemes, V.E.R., Sobreiro, R.F., Sorella, S.P.: Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region. Eur. Phys. J. C 66(3–4), 451–464 (2009). arXiv:0901.3158 ADSGoogle Scholar
  64. 64.
    Pereira, A.D., Sobreiro, R.F.: On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories. Eur. Phys. J. C 73(10), 2584 (2013). arXiv:1308.4159 ADSCrossRefGoogle Scholar
  65. 65.
    Padmanabhan, T.: The Physical Principle that determines the Value of the Cosmological Constant. arXiv:1210.4174
  66. 66.
    Perivolaropoulos, L.: Vacuum energy, the cosmological constant, and compact extra dimensions: Constraints from Casimir effect experiments. Phys. Rev. D 77(10), 107301 (2008). arXiv:0802.1531 ADSCrossRefGoogle Scholar
  67. 67.
    Nelson, B.L., Panangaden, P.: Scaling behavior of interacting quantum fields in curved spacetime. Phys. Rev. D 25(4), 1019–1027 (1982)ADSCrossRefGoogle Scholar
  68. 68.
    Toms, D.J.: The effective action and the renormalization group equation in curved space-time. Phys. Lett. B 126(1–2), 37–40 (1983)ADSCrossRefGoogle Scholar
  69. 69.
    Bukhbinder, I.L.: Renormalization-group equations in curved space-time. Theor. Math. Phys. 61(3), 1215–1219 (1984)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Parker, L., Toms, D.J.: Renormalization group and nonlocal terms in the curved-spacetime effective action: Weak-field results. Phys. Rev. D 32(6), 1409–1420 (1985)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Shapiro, I.L., Sola, J.: Cosmological constant problems and renormalization group. J. Phys. A 40(25), 6583–6593 (2006). arXiv:gr-qc/0611055 ADSMathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Shapiro, I.L., Sola, J.: On the possible running of the cosmological “constant”. Phys. Lett. B 682(1), 105–113 (2009). arXiv:0910.4925 ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Fabris, J.C., Pelinson, A.M., Shapiro, I.L.: Anomaly-induced effective action and inflation. Nucl. Phys. B Proc. Suppl. 95(1–3), 78–81 (2001). arXiv:hep-th/0011030 ADSCrossRefMATHGoogle Scholar
  74. 74.
    Pelinson, A., Shapiro, I., Takakura, F.: On the stability of the anomaly-induced inflation. Nucl. Phys. B 648(1–2), 417–445 (2003). arXiv:hep-ph/0208184v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Koksma, J.F., Prokopec, T.: Effect of the trace anomaly on the cosmological constant. Phys. Rev. D 78(2), 023508 (2008). arXiv:0803.4000 ADSCrossRefGoogle Scholar
  76. 76.
    Sobreiro, R.F., Tomaz, A.A.: Predicting Planck Scale and Newtonian constant from a Yang-Mills gauge theory: 1- and 2-loop estimates. Adv. High Energy Phys. 2016, 1–14 (2016). arXiv:1607.00399 CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CBPF - Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  2. 2.Instituto de FísicaUFF - Universidade Federal FluminenseNiteróiBrazil

Personalised recommendations