Advertisement

Comparison of particle properties in Kerr metric and in rotating coordinates

  • Andrey A. GribEmail author
  • Yuri V. Pavlov
Research Article

Abstract

Properties of particles in Kerr metric are compared with properties of particles in rotating coordinates in Minkowski space-time. It is shown that particles with negative and zero energies existing in the ergosphere of the rotating black hole also exist in the region out of the static limit in rotating coordinates in Minkowski space-time. Some similarities like the Penrose process and differences in both cases are analyzed.

Keywords

Black holes Kerr metric Rotating frames 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, Grant No. 15-02-06818-a and by the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. 1.
    Ehrenfest, P.: Gleichförmige Rotation starrer Körper und Relativitätstheorie. Phys. Z. 10, 918 (1909) [English transl. Uniform Rotation of Rigid Bodies and the Theory of Relativity in [2], p. 3]Google Scholar
  2. 2.
    Rizzi, G., Ruggiero, M.L. (eds.): Relativity in Rotating Frames. Kluwer Academic Publisher, Boston (2004)zbMATHGoogle Scholar
  3. 3.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1994)zbMATHGoogle Scholar
  4. 4.
    Fock, V.: Theory of Space Time and Gravitation. Pergamon Press, Oxford (1964)zbMATHGoogle Scholar
  5. 5.
    Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  8. 8.
    Novikov, I.D., Frolov, V.P.: Physics of Black Holes [in Russian]. Nauka, Moscow (1986); Frolov, V.P., Novikov, I.D.: Black Hole Physics: Basic Concepts and New Developments. Kluwer Academic Publisher, Dordrecht, (1998)Google Scholar
  9. 9.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)zbMATHGoogle Scholar
  10. 10.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1976)zbMATHGoogle Scholar
  11. 11.
    Grib, A.A., Pavlov, YuV: On the energy of particle collisions in the ergosphere of the rotating black holes. Europhys. Lett. 101, 20004 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Grib, A.A., Pavlov, YuV: Collision energy of particles in the ergosphere of rotating black holes. Theor. Math. Phys. 176, 881–887 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zaslavskii, O.B.: Acceleration of particles as a universal property of ergosphere. Mod. Phys. Lett. A 28, 1350037 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Lightman, A.P., Press, W.H., Price, R.H., Teukolsky, S.A.: Problem Book in Relativity and Gravitation. Princeton University Press, Princeton (1975)zbMATHGoogle Scholar
  15. 15.
    Grib, A.A., Pavlov, YuV, Vertogradov, V.D.: Geodesics with negative energy in the ergosphere of rotating black holes. Mod. Phys. Lett. A 29, 1450110 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grib, A.A., Pavlov, Yu.V.: Black holes and particles with zero or negative energy. Theory Math. Phys. 190, 268–278 (2017); arXiv:1601.02592
  17. 17.
    Bañados, M., Silk, J., West, S.M.: Kerr black holes as particle accelerators to arbitrarily high energy. Phys. Rev. Lett. 103, 111102 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Penrose, R.: Gravitational collapse: The role of General Relativity. Rivista Nuovo Cimento I, Num. Spec. 252–276 (1969)Google Scholar
  19. 19.
    Penrose, R.: Gravitational collapse: the role of general relativity. Gen. Relativ. Gravit. 34, 1141–1165 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Theoretical Physics and Astronomy DepartmentThe Herzen UniversitySt. PetersburgRussia
  3. 3.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  4. 4.N.I. Lobachevsky Institute of Mathematics and MechanicsKazan Federal UniversityKazanRussia

Personalised recommendations