Non-minimally coupled dark fluid in Schwarzschild spacetime

Research Article

Abstract

If one assumes a particular form of non-minimal coupling, called the conformal coupling, of a perfect fluid with gravity in the fluid–gravity Lagrangian then one gets modified Einstein field equation. In the modified Einstein equation the effect of the non-minimal coupling does not vanish if one works with spacetimes for which the Ricci scalar vanishes. In the present work we use the Schwarzschild metric in the modified Einstein equation, in the presence of non-minimal coupling with a fluid, and find out the energy–density and pressure of the fluid. In the present case the perfect fluid is part of the solution of the modified Einstein equation. We also solve the modified Einstein equation, using the flat spacetime metric and show that in the presence of non-minimal coupling one can accommodate a perfect fluid of uniform energy–density and pressure in the flat spacetime. In both the cases the fluid pressure turns out to be negative. Except these non-trivial solutions it must be noted that the vacuum solutions also remain as trivial valid solutions of the modified Einstein equation in the presence of non-minimal coupling.

Keywords

Dark fluid Non-minimal coupling Einstein equation 

Notes

Acknowledgements

The authors thank Sayantani Bhattacharya, in the Physics Department of Indian Institute of Technology, Kanpur, for helpful discussions.

References

  1. 1.
    Goenner, H.F.M.: Found. Phys. 14, 865 (1984)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Prasanna, A.R., Mohanty, S.: Class. Quantum Gravity 20, 3023 (2003). doi:10.1088/0264-9381/20/14/304. arXiv:gr-qc/0306021 ADSCrossRefGoogle Scholar
  3. 3.
    Frieman, J., Turner, M., Huterer, D.: Ann. Rev. Astron. Astrophys. 46, 385 (2008). doi:10.1146/annurev.astro.46.060407.145243. arXiv:0803.0982 [astro-ph]ADSCrossRefGoogle Scholar
  4. 4.
    Frieman, J.A., Huterer, D., Linder, E.V., Turner, M.S.: Phys. Rev. D 67, 083505 (2003). doi:10.1103/PhysRevD.67.083505. arXiv:astro-ph/0208100 ADSCrossRefGoogle Scholar
  5. 5.
    Bettoni, D., Liberati, S.: JCAP 1508(08), 023 (2015). doi:10.1088/1475-7516/2015/08/023. arXiv:1502.06613 [gr-qc]ADSCrossRefGoogle Scholar
  6. 6.
    Bruneton, J.P., Liberati, S., Sindoni L., Famaey, B.: doi:10.1088/1475-7516/2009/03/021. arXiv:0811.3143 [astro-ph]
  7. 7.
    Bettoni, D., Liberati, S., Sindoni, L.: JCAP 1111, 007 (2011). doi:10.1088/1475-7516/2011/11/007. arXiv:1108.1728 [gr-qc]ADSCrossRefGoogle Scholar
  8. 8.
    Bettoni, D., Pettorino, V., Liberati, S., Baccigalupi, C.: JCAP 1207, 027 (2012). doi:10.1088/1475-7516/2012/07/027. arXiv:1203.5735 [astro-ph.CO]ADSCrossRefGoogle Scholar
  9. 9.
    Andersson, N., Comer, G.L.: Living Rev. Rel. 10, 1 (2007). doi:10.12942/lrr-2007-1. arXiv:gr-qc/0605010 CrossRefGoogle Scholar
  10. 10.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, Hoboken (1972)Google Scholar
  11. 11.
    Schutz, B.F., Sorkin, R.: Ann. Phys. 107, 1 (1977). doi:10.1016/0003-4916(77)90200-7 ADSCrossRefGoogle Scholar
  12. 12.
    Brown, J.D.: Class. Quantum Gravity 10, 1579 (1993). doi:10.1088/0264-9381/10/8/017. arXiv:gr-qc/9304026 ADSCrossRefGoogle Scholar
  13. 13.
    Taub, A.H.: Phys. Rev. 94, 1468 (1954). doi:10.1103/PhysRev.94.1468 ADSCrossRefGoogle Scholar
  14. 14.
    Chiueh, T.: Phys. Rev. E 49, 1269 (1994). doi:10.1103/PhysRevE.49.1269 ADSCrossRefGoogle Scholar
  15. 15.
    LeFloch, P.G., Xiang, S.: arXiv:1512.08253 [math.AP]
  16. 16.
    Guzman, F.S., Lora-Clavijo, F.D.: Mon. Not. R. Astron. Soc. 416, 3083 (2011). doi:10.1111/j.1365-2966.2011.19258.x. arXiv:1106.3521 [astro-ph.GA]ADSCrossRefGoogle Scholar
  17. 17.
    Guzman, F.S., Lora-Clavijo, F.D.: Mon. Not. R. Astron. Soc. 415, 225 (2011). doi:10.1111/j.1365-2966.2011.18687.x. arXiv:1103.5497 [astro-ph.GA]ADSCrossRefGoogle Scholar
  18. 18.
    Bini, D., Geralico, A., Succi, S.: Eur. Phys. J. C 72, 1913 (2012). doi:10.1140/epjc/s10052-012-1913-5. arXiv:1408.5257 ADSCrossRefGoogle Scholar
  19. 19.
    Caldwell, R.R.: Phys. Lett. B 545, 23 (2002). doi:10.1016/S0370-2693(02)02589-3. arXiv:astro-ph/9908168 ADSCrossRefGoogle Scholar
  20. 20.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003). doi:10.1103/PhysRevLett.91.071301. arXiv:astro-ph/0302506 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Centre for Radio AstrophysicsTata Institute of Fundamental Research, PunePuneIndia
  2. 2.Department of PhysicsIndian Institute of Technology, KanpurKanpurIndia

Personalised recommendations