Advertisement

On stability of the Kasner solution in quadratic gravity

  • A. Toporensky
  • D. Müller
Research Article

Abstract

We consider the dynamics of a flat anisotropic Universe filled by a perfect fluid near a cosmological singularity in quadratic gravity. Two possible regimes are described—the Kasner anisotropic solution and an isotropic “vacuum radiation” solution which has three sub cases depending on whether the equation of state parameter w is bigger, smaller or equals to 1 / 3. Initial conditions for numerical integrations have been chosen near a General Relativity anisotropic solution with matter (Jacobs solution). We have found that for such initial conditions there is a range of values of the coupling constants so that the resulting cosmological singularity is isotropic.

Keywords

Quadratic gravity Homogenenous solutions Numerical aolutions 

Notes

Acknowledgements

D. M. would like to thank CAPES grant 8772-13-4, and the kind hospitality at CWRU were part of this work was done, and the Brazilian project “Nova Física no Espaço”. The work of A.T.was supported by RFBR Grant 14-02-00894 and partially supported by the Russian Government Program of Competitive Growth of Kazan Federal University. A.T. thanks Instituto de Fisica, Universidade de Brasilia, where part of this work was done, for hospitality.

References

  1. 1.
    Weyl, H.: Sitzungsber. Königl. Preuss. Akad. Wiss. 26, 465 (1918)Google Scholar
  2. 2.
    Buchdahl, H.: Il Nuovo Cimento Ser. 10(23), 141 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    Ruzmaikina, T., Ruzmaikin, A.: Sov. Phys. JETP 30, 372 (1970)ADSGoogle Scholar
  4. 4.
    Gurovich, V.T.S., Starobinskii, A.A.: Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 77, 1683 (1979)ADSGoogle Scholar
  5. 5.
    Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    Schmidt, H.-J.: Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Tomita, K., Azuma, T., Nariai, H.: Prog. Theor. Phys. 60, 403 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    Muller, V., Schmidt, H., Starobinsky, A.A.: Phys. Lett. B 202, 198 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Berkin, A.L.: Phys. Rev. D 44, 1020 (1991)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Barrow, J.D., Hervik, S.: Phys. Rev. D 73, 023007 (2006). arXiv:gr-qc/0511127 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Barrow, J.D., Hervik, S.: Phys. Rev. D 74, 124017 (2006). arXiv:gr-qc/0610013 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Vitenti, S.D.P., Müller, D.: Phys. Rev. D 74, 063508 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Müller, D., Vitenti, S.D.P.: Phys. Rev. D 74, 083516 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Cotsakis, S.: Gravit. Cosmol. 14, 176 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Barrow, J.D., Hervik, S.: Phys. Rev. D 81, 023513 (2010). arXiv:0911.3805 [gr-qc]ADSCrossRefGoogle Scholar
  16. 16.
    Müller, D.: International Journal of Modern Physics: Conference Series, vol. 3. World Scientific, Singapore (2011)Google Scholar
  17. 17.
    de Deus, J.A., Müller, D.: Gen. Relativ. Gravit. 44, 1459 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Muller, D., de Deus, J.A.: Int. J. Mod. Phys. D 21, 1250037 (2012). arXiv:1203.6882 [gr-qc]ADSCrossRefGoogle Scholar
  19. 19.
    Müller, D., Alves, M.E., de Araujo, J.C.: Int. J. Mod. Phys. D 23, 1450019 (2014)CrossRefGoogle Scholar
  20. 20.
    Middleton, J.: Class. Quantum Gravity 27, 225013 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Middleton, J., Barrow, J.D.: Phys. Rev. D 77, 103523 (2008)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Barrow, J.D., Middleton, J.: Phys. Rev. D 75, 123515 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Carloni, S., Troisi, A., Dunsby, P.K.S.: Gen. Relativ. Gravit. 41, 1757 (2009). arXiv:0706.0452 [gr-qc]ADSCrossRefGoogle Scholar
  24. 24.
    Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Phys. Rev. D 75, 083504 (2007). arXiv:grqc/0612180 [gr-qc]
  25. 25.
    Ivanov, M., Toporensky, A.V.: Int. J. Mod. Phys. D 21, 1250051 (2012). arXiv:1112.4194 [gr-qc]ADSCrossRefGoogle Scholar
  26. 26.
    Bukzhalev, E.E., Ivanov, M.M., Toporensky, A.V.: Class. Quantum Gravity 31, 045017 (2014). arXiv:1306.5971 [gr-qc]ADSCrossRefGoogle Scholar
  27. 27.
    Sami, M., Toporensky, A., Tretjakov, P.V., Tsujikawa, S.: Phys. Lett. B 619, 193 (2005). arXiv:hepth/0504154 [hep-th]
  28. 28.
    Barrow, J.D., Clifton, T.: Class. Quantum Gravity 23, L1 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Clifton, T., Barrow, J.D.: Class. Quantum Gravity 23, 2951 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Kasner, E.: Am. J. Math. 43, 217 (1921)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Belinsky, V., Khalatnikov, I., Lifshitz, E.: Adv. Phys. 19, 525 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    Cotsakis, S., Tsokaros, A.: Phys. Lett. B 651, 341 (2007). arXiv:gr-qc/0703043 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Cotsakis, S., Miritzis, J.: Class. Quantum Gravity 15, 2795 (1998). arXiv:gr-qc/9712026 [gr-qc]ADSCrossRefGoogle Scholar
  34. 34.
    Miritzis, J.: J. Math. Phys. 44, 3900 (2003). arXiv:grqc/0305062 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Miritzis, J.: Gen. Relativ. Gravit. 41, 49 (2009). arXiv:0708.1396 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Wainwright, J., Ellis, G.F.R.: Dynamical systems in cosmology. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  37. 37.
    Robinson, B.B.: Proc. Natl. Acad. Sci. USA 47, 1852 (1961)ADSCrossRefGoogle Scholar
  38. 38.
    Heckmann, O., Schücking, E.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)Google Scholar
  39. 39.
    Jacobs, K.C.: Astrophys. J. 153, 661 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow UniversiryMoscowRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations