Skip to main content
Log in

Parameter estimates in binary black hole collisions using neural networks

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  2. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  3. Abbott, B.P., et al.: ApJL 818, L22 (2016)

    Article  ADS  Google Scholar 

  4. Sathyaprakash, B.S., Schutz, B.F.: Living Rev. Relativ. 12, 2 (2009)

    Article  ADS  Google Scholar 

  5. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 241102 (2016)

    Article  ADS  Google Scholar 

  6. Veitich, J., Raymond, V., Farr, B., Farr, W., Graff, P., Vitale, S., et al.: Phys. Rev. D 91, 042003 (2015)

    Article  ADS  Google Scholar 

  7. González, J.A., Sperhake, U., Bruegmann, B., Hannam, M., Husa, S.: Phys. Rev. Lett. 98, 091101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. González, J.A., Hannam, M.D., Sperhake, U., Bruegmann, B., Husa, S.: Phys. Rev. Lett. 98, 231101 (2007)

    Article  ADS  Google Scholar 

  9. Ajith, P., et al.: Class. Quantum Gravity 29, 124001 (2012)

    Article  ADS  Google Scholar 

  10. Mroué, A.H., et al.: Phys. Rev. Lett. 111, 241104 (2013)

    Article  ADS  Google Scholar 

  11. Jani, K., Healy, J., Clark, J.A., London, L., Laguna, P., Shoemaker, D.: arXiv:1605.03204

  12. Biswas, R., et al.: Phys. Rev. D 88, 062003 (2013)

    Article  ADS  Google Scholar 

  13. Baker, P.T., Caudill, S., Hodge, K.A., Talukder, D., Capano, C., Cornish, N.J.: Phys. Rev. D 91, 062004 (2015)

    Article  ADS  Google Scholar 

  14. Raymond, V., van der Sluys, M.V., Mandel, I., Kalogera, V., Rover, C., Christensen, N.: Classs. Quantum Gravity 26, 114007 (2009)

    Article  ADS  Google Scholar 

  15. Smith, R.J.E., Cannon, K., Hanna, C., Keppel, D., Mandel, I.: Phys. Rev. D 87, 122002 (2013)

    Article  ADS  Google Scholar 

  16. Einstein toolkit. http://www.einsteintoolkit.org

  17. Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.C., Ott, C.D., Schnetter, E., Allen, G., Campanelli, M., Laguna, P.: Class. Quantum Gravity 29, 115001 (2012)

    Article  ADS  Google Scholar 

  18. Kahn, S., Husa, S., Hannam, M., Ohme, F., Púrrer, M., Forteza, X.J., Bohé, A.: Phys. Rev. D 93, 044007 (2016)

    Article  ADS  Google Scholar 

  19. Field, S.E., Galley, C.R., Hesthaven, J.S., Kaye, J., Tiglio, M.: Phys. Rev. X 4, 031006 (2014)

    Google Scholar 

  20. Cook, G.B.: Living Rev. Relativ. 3, 5 (2000)

    Article  ADS  Google Scholar 

  21. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  22. Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  23. Schenetter, E., Diener, P., Dorband, N., Tiglio, M.: Class. Quantum Gravity 23, S553–S578 (2006)

    Article  ADS  Google Scholar 

  24. Reisswig, C., Pollney, D.: Class. Quantum Gravity 28, 195015 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  26. LeCun, Y., Bottou, L., Orr, G., Muller, K.: Efficient backprop. In: Orr, G., Muller, K. (eds.) Neural Networks: Tricks of the Trade. Springer, Berlin (1998)

    Google Scholar 

  27. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Nature 323, 533–536 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by Grants CIC-UMSNH-4.9, CIC-UMSNH-4.23 and CONACyT 258726 (Fondo Sectorial de Investigación para la Educación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Guzmán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, M., Gracia-Linares, M., González, J.A. et al. Parameter estimates in binary black hole collisions using neural networks. Gen Relativ Gravit 48, 141 (2016). https://doi.org/10.1007/s10714-016-2136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2136-0

Keywords

Navigation