Gravitational radiation by point particle eccentric binary systems in the linearised characteristic formulation of general relativity

  • C. E. Cedeño MontañaEmail author
  • J. C. N. de Araujo
Research Article


We study a binary system composed of point particles of unequal masses in eccentric orbits in the linear regime of the characteristic formulation of general relativity, generalising a previous study found in the literature in which a system of equal masses in circular orbits is considered. We also show that the boundary conditions on the time-like world tubes generated by the orbits of the particles can be extended beyond circular orbits. Concerning the power lost by the emission of gravitational waves, it is directly obtained from the Bondi’s News function. It is worth stressing that our results are completely consistent, because we obtain the same result for the power derived by Peters and Mathews, in a different approach, in their seminal paper of 1963. In addition, the present study constitutes a powerful tool to construct extraction schemes in the characteristic formalism to obtain the gravitational radiation produced by binary systems during the inspiralling phase.


General relativity Characteristic formulation Linear regime Approximation methods 



We thank the Brazilian agencies CAPES, FAPESP (2013/11990-1) and CNPq (308983/2013-0) by the financial support. We would also like to thank the referees for their helpful comments and suggestions.


  1. 1.
    Reisswig, C., Bishop, N.T., Pollney, D., Szilágyi, B.: Class. Quantum Gravity 27(7), 075014 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Babiuc, M.C., Bishop, N.T., Szilágyi, B., Winicour, J.: Phys. Rev. D 79(8), 084011 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Babiuc, M.C., Szilágyi, B., Winicour, J., Zlochower, Y.: Phys. Rev. D 84(4), 044057 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Gómez, R., Papadopoulos, P., Winicour, J.: J. Math. Phys. 35(8), 4184 (1994)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barreto, W., Da Silva, A.: Gen. Relativ. Gravit. 28(6), 735 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Barreto, W., Silva, A.D.: Class. Quantum Gravity 16(6), 1783 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Barreto, W., Peralta, C., Rosales, L.: Phys. Rev. D 59, 024008 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: Phys. Rev. D 60, 024005 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Linke, F., Font, J.A., Janka, H.T., Müller, E., Papadopoulos, P.: Astron. Astrophys. 376, 568 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Siebel, F., Font, J.A., Papadopoulos, P.: Phys. Rev. D 65, 024021 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Siebel, F., Font, J.A., Müller, E., Papadopoulos, P.: Phys. Rev. D 67, 124018 (2003)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: Phys. Rev. D 72, 024002 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bishop, N.T.: Class. Quantum Gravity 22(12), 2393 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Bishop, N.T., Pollney, D., Reisswig, C.: Class. Quantum Gravity 28(15), 155019 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Cedeño M., C.E., de Araujo, J.C.N.: ArXiv e-prints (2015)Google Scholar
  16. 16.
    Peters, P.C., Mathews, J.: Phys. Rev. 131, 435 (1963)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bishop, N.T., Gómez, R., Lehner, L., Winicour, J.: Phys. Rev. D 54, 6153 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: Phys. Rev. D 56, 6298 (1997)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gómez, R., Lehner, L., Papadopoulos, P., Winicour, J.: Class. Quantum Gravity 14(4), 977 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Bishop, N.T., Gómez, R., Husa, S., Lehner, L., Winicour, J.: Phys. Rev. D 68, 084015 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Gómez, R., Barreto, W., Frittelli, S.: Phys. Rev. D 76, 124029 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Proc. Phys. Soc. Lond. Sect. A 269(1336), 21 (1962)ADSCrossRefGoogle Scholar
  23. 23.
    Sachs, R.K.: Proc. Phys. Soc. Lond. Sect. A 270(1340), 103 (1962)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J., Szilagyi, B.: Class. Quantum Gravity 24(12), S327 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Handmer, C.J., Szilágyi, B.: Class. Quantum Gravity 32(2), 025008 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Torres Del Castillo, G.F.: Rev. Mex. Fis. Suppl. 53(2), 125 (2007)MathSciNetGoogle Scholar
  27. 27.
    Newman, E.T., Penrose, R.: J. Math. Phys. 7, 863 (1966)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: J. Math. Phys. 8, 2155 (1967)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Zlochower, Y., Gómez, R., Husa, S., Lehner, L., Winicour, J.: Phys. Rev. D 68, 084014 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Reisswig, C., Bishop, N., Pollney, D.: Gen. Relativ. Gravit. 45(5), 1069 (2013)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Stephani, H.: General Relativity, An Introduction to the Theory of Gravitational Field, 2nd edn. Cambridge University Press, Canada (1990)zbMATHGoogle Scholar
  32. 32.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Co., San Francisco (1973)Google Scholar
  33. 33.
    Mädler, T.: Phys. Rev. D 87, 104016 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Isaacson, R.A., Welling, J.S., Winicour, J.: J. Math. Phys. 26(11), 2859 (1985)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Winicour, J.: J. Math. Phys. 24(5), 1193 (1983)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • C. E. Cedeño Montaña
    • 1
    Email author
  • J. C. N. de Araujo
    • 1
  1. 1.Instituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil

Personalised recommendations