Advertisement

Non-singular rotating black hole with a time delay in the center

  • Tommaso De Lorenzo
  • Andrea Giusti
  • Simone SpezialeEmail author
Research Article

Abstract

As proposed by Bambi and Modesto, rotating non-singular black holes can be constructed via the Newman–Janis algorithm. Here we show that if one starts with a modified Hayward black hole with a time delay in the centre, the algorithm succeeds in producing a rotating metric, but curvature divergences reappear. To preserve finiteness, the time delay must be introduced directly at the level of the non-singular rotating metric. This is possible thanks to the deformation of the inner stationarity limit surface caused by the regularisation, and in more than one way. We outline three different possibilities, distinguished by the angular velocity of the event horizon. Along the way, we provide additional results on the Bambi–Modesto rotating Hayward metric, such as the structure of the regularisation occurring at the centre, the behaviour of the quantum gravity scale alike an electric charge in decreasing the angular momentum of the extremal black hole configuration, or details on the deformation of the ergosphere.

Keywords

Non-singular black holes Newman–Janis algorithm Violations of weak energy condition 

Notes

Acknowledgments

We thank Pietro Donà, Thibaut Josset and Carlo Rovelli for useful discussions.

References

  1. 1.
    Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 31103 (2006). arxiv:gr-qc/0506126 ADSCrossRefGoogle Scholar
  2. 2.
    Frolov, V. P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. (2014). arXiv:1402.5446
  3. 3.
    Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D81 (2010). arxiv:0901.3156
  4. 4.
    Barrau, A., Rovelli, C.: Planck star phenomenology. Phys. Lett. B 739, 405 (2014). arXiv:1404.5821 ADSCrossRefGoogle Scholar
  5. 5.
    Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. Phys. Rev. D90(12), 127503 (2014). arXiv:1409.4031 ADSGoogle Scholar
  6. 6.
    Barrau, A., Bolliet, B., Vidotto, F., Weimer, C.: Phenomenology of bouncing black holes in quantum gravity: a closer look. arxiv:1507.05424
  7. 7.
    Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Fock, V. A., et al. (eds.) GR5, Abstracts of the 5th international conference on gravitation and the theory of relativity. University Press, Tbilisi, 9–13 September 1968Google Scholar
  8. 8.
    Frolov, V.P., Vilkovisky, G.A.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307–313 (1981)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Roman, T.A., Bergmann, P.G.: Stellar collapse without singularities? Phys. Rev. D 28, 1265–1277 (1983)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Casadio, R.: Quantum gravitational fluctuations and the semiclassical limit. Int. J. Mod. Phys D9, 511–529 (2000). arXiv:gr-qc/9810073 ADSGoogle Scholar
  11. 11.
    Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. arxiv:gr-qc/0109035
  12. 12.
    Dymnikov, I.: Cosmological term as a source of mass. Class. Quant. Grav. 19, 725–740 (2002). arXiv:gr-qc/0112052 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Visser, M., Barcelo, C., Liberati, S., Sonego, S.: Small, dark, and heavy: But is it a black hole? arXiv:0902.0346. [PoSBHGRS,010(2008)]
  14. 14.
    Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010). arXiv:1005.5605 ADSCrossRefGoogle Scholar
  16. 16.
    Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329–334 (2013). arXiv:1302.6075 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bambi, C., Malafarina, D., Modesto, L.: Non-singular quantum-inspired gravitational collapse. Phys. Rev. D 88, 044009 (2013). arXiv:1305.4790 ADSCrossRefGoogle Scholar
  18. 18.
    Haggard, H.M., Rovelli, C.: Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. arxiv:1407.0989
  19. 19.
    Mersini-Houghton, L.: Backreaction of hawking radiation on a gravitationally collapsing star i: Black holes?, PLB30496 Phys. Lett. B, 16 September 2014 (06, 2014). arxiv:1406.1525
  20. 20.
    De Lorenzo, T., Pacilio, C., Rovelli, C., Speziale, S.: On the effective metric of a Planck star. Gen. Relativ. Gravit. 47(4), 41 (2015). arXiv:1412.6015 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ayon-Beato, E., Garcia, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B493, 149–152 (2000). arXiv:gr-qc/0009077 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Saueressig, F., Alkofer, N., D’Odorico, G., Vidotto, F.: Black holes in asymptotically safe gravity, PoS FFP14 (2015) 174. arxiv:1503.06472
  24. 24.
    Bambi, C., Malafarina, D., Modesto, L.: Terminating black holes in asymptotically free quantum gravity. Eur. Phys. J. C 74, 2767 (2014). arXiv:1306.1668 ADSCrossRefGoogle Scholar
  25. 25.
    Frolov, V.P.: Mass-gap for black hole formation in higher derivative and ghost free gravity. Phys. Rev. Lett. 115(5), 051102 (2015). arXiv:1505.00492 ADSCrossRefGoogle Scholar
  26. 26.
    Modesto, L.: Loop quantum black hole. Class. Quant. Grav. 23, 5587–5602 (2006). arXiv:gr-qc/0509078 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quant. Grav. 22, 3349–3362 (2005). arXiv:gr-qc/0504029 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). arXiv:gr-qc/0602086 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23(12), 1442026 (2014). arXiv:1401.6562 ADSCrossRefGoogle Scholar
  30. 30.
    Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915–917 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Caravelli, F., Modesto, L.: Spinning loop black holes. Class. Quant. Grav. 27, 245022 (2010). arXiv:1006.0232 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ghosh, S.G., Amir, M.: Horizon structure of rotating Bardeen black hole and particle acceleration. arxiv:1506.04382
  33. 33.
    Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum corrections to the Schwarzschild and Kerr metrics. Phys. Rev. D 68, 084005 (2003). arXiv:hep-th/0211071. [Erratum: Phys. Rev. D71,069904(2005)]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Adamo, T., Newman, E.T.: The Kerr–Newman metric: a review. Scholarpedia 9, 31791 (2014). arXiv:1410.6626 ADSCrossRefGoogle Scholar
  35. 35.
    Drake, S.P., Szekeres, P.: Uniqueness of the Newman–Janis algorithm in generating the Kerr–Newman metric. Gen. Relativ. Gravit. 32, 445–458 (2000). arXiv:gr-qc/9807001 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  37. 37.
    Debnath, U.: Accretion and evaporation of modified hayward black hole. Eur. Phys. J. C75 (2015), no. 3 129. arxiv:1503.01645
  38. 38.
    Bambi, C.: Testing the Kerr black hole hypothesis. Mod. Phys. Lett. A 26, 2453–2468 (2011). arXiv:1109.4256 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Bambi, C.: Testing the Bardeen metric with the black hole candidate in Cygnus X-1. Phys. Lett. B 730, 59–62 (2014). arXiv:1401.4640 ADSCrossRefGoogle Scholar
  40. 40.
    Smailagic, A., Spallucci, E.: ’Kerrr’ black hole: the Lord of the String. Phys. Lett. B 688, 82–87 (2010). arXiv:1003.3918 ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)ADSCrossRefGoogle Scholar
  43. 43.
    Segre, C.: Sulla teoria e sulla class delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. Transeunti Acc. Lincei VIII(III), 19 (1883–84)Google Scholar
  44. 44.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time, vol. 1, 20th edn. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  45. 45.
    Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44–48 (2014). arXiv:1402.2694 ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quant. Grav. 32(8), 084001 (2015). arXiv:1410.7062 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. JHEP 06, 180 (2015). arXiv:1409.0144 ADSMathSciNetGoogle Scholar
  48. 48.
    Smerlak, M.: Black holes and reversibility. Talk given at the International Loop Quantum Gravity Seminar, 2015. web linkGoogle Scholar
  49. 49.
    De Lorenzo, T.: Investigating Static and Dynamic Non-Singular Black Holes. Master thesis in theoretical physics, University of Pisa, 2014Google Scholar
  50. 50.
    Carlitz, R.D., Willey, R.S.: The lifetime of a black hole. Phys. Rev. D 36, 2336 (1987)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tommaso De Lorenzo
    • 1
  • Andrea Giusti
    • 1
    • 2
  • Simone Speziale
    • 1
    Email author
  1. 1.Centre de Physique Theorique, CNRS-UMR 7332Aix-Marseille Université & Université de ToulonMarseilleFrance
  2. 2.Dip. di Fisica e AstronomiaUniversità di BolognaBolognaItaly

Personalised recommendations