Advertisement

Slowly rotating perfect fluids with a cosmological constant

  • Christian G. BöhmerEmail author
  • Matthew Wright
Research Article

Abstract

Hartle’s slow rotation formalism is developed in the presence of a cosmological constant. We find the generalisation of the Hartle–Thorne vacuum metric, the Hartle–Thorne-(anti)-de Sitter metric, and find that it is always asymptotically (anti)-de Sitter. Next we consider Wahlquist’s rotating perfect fluid interior solution in Hartle’s formalism and discuss its matching to the Hartle–Thorne-(anti)-de Sitter metric. It is known that the Wahlquist solution cannot be matched to an asymptotically flat region and therefore does not provide a model of an isolated rotating body in this context. However, in the presence of a cosmological term, we find that it can be matched to an asymptotic (anti)-de Sitter space and we are able to interpret the Wahlquist solution as a model of an isolated rotating body, to second order in the angular velocity.

Keywords

Slow rotation Hartle’s formalism Cosmological constant 

Notes

Acknowledgments

We are very grateful to Gyula Fodor for valuable comments on the manuscript.

References

  1. 1.
    Krasiński, A.: Ann. Phys. 112, 22–40 (1978)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Keres, H., Eksper, Zh: Teor. Fiz. 52, 768–779 (1967)Google Scholar
  3. 3.
    Israel, W.: Phys. Rev. D 2, 641–646 (1970)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Neugebauer, G., Meinel, R.: Phys. Rev. Lett. 75, 3046–3047 (1995). [ gr-qc/0302060]
  5. 5.
    Klein, C.: Phys. Rev. D 63, 064033 (2001). [ gr-qc/0102083]
  6. 6.
    Cuchí, J.E., Gil-Rivero, A., Molina, A., Ruiz, E.: Gen. Rel. Grav. 1433–1456 (2013); [Erratum-ibid. 45 (2013) 1457] [ arXiv:1212.4456 [gr-qc]]
  7. 7.
    Stergioulas, N.: Living Rev. Rel. 6, 3 (2003). [ gr-qc/0302034]
  8. 8.
    Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars. Cambridge University Press, Cambridge (2013)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hartle, J.B.: Astrophys. J. 150, 1005 (1967)CrossRefADSGoogle Scholar
  10. 10.
    Hartle, J.B., Thorne, K.S.: Astrophys. J. 153, 807 (1968)CrossRefADSGoogle Scholar
  11. 11.
    Bradley, M., Fodor, G., Marklund, M., Perjes, Z.: Class. Quant. Gravit. 17, 351 (2000). [ gr-qc/9910001]
  12. 12.
    Bradley, M., Fodor, G., Perjes, Z.: Class. Quant. Gravit. 17, 2635 (2000). [ gr-qc/0002014]
  13. 13.
    Bradley, M., Eriksson, D., Fodor, G., Racz, I.: Phys. Rev. D 75, 024013 (2007). [ gr-qc/0612046]
  14. 14.
    Riess, A.G., et al.: Supernova search team collaboration. Astron. J. 116, 1009 (1998). [ astro-ph/9805201]
  15. 15.
    Perlmutter, S., et al.: Supernova cosmology project collaboration. Astrophys. J. 517, 565–586 (1999). [ astro-ph/9812133]
  16. 16.
    Islam, J.N.: Rotating Fields in General Relativity. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  17. 17.
    Debever, R., Kamran, N., McLenaghan, R.G.: J. Math. Phys. 26, 1955–1972 (1984)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Charmousis, C., Langlois, D., Steer, D.A., Zegers, R.: JHEP 0702, 064 (2007). [ gr-qc/0610091]
  19. 19.
    Carter, B.: Phys. Lett. A 26, 399–400 (1968)CrossRefADSGoogle Scholar
  20. 20.
    Parikh, M.K.: Phys. Lett. B 546, 189 (2002). [ hep-th/0204107]
  21. 21.
    Fodor, G., Marklund, M., Perjes, Z.: Class. Quant. Gravit. 16, 453–463 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Ashtekar, A., Magnon, A.: Class. Quant. Gravit. 1, L39 (1984)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Ashtekar, A., Bonga, B., Kesavan, A.: Class. Quant. Gravit. 32(2), 025004 (2015); [ arXiv:1409.3816 [gr-qc]]
  24. 24.
    Wahlquist, H.D.: Phys. Rev. 172, 1291–1296 (1968)CrossRefADSGoogle Scholar
  25. 25.
    Boyer, R.H.: Math. Proc. Camb. Philos. Soc. 61, 527–530 (1965)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Roos, W.: Gen. Rel. Gravit. 7, 431–444 (1976)ADSGoogle Scholar
  27. 27.
    Fodor, G., Perjes, Z., Bradley, M.: Phys. Rev. D 66, 084012 (2002). [ gr-qc/0207099]

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity College LondonLondonUK

Personalised recommendations