Black hole evaporation: information loss but no paradox

  • Sujoy K. Modak
  • Leonardo Ortíz
  • Igor Peña
  • Daniel Sudarsky
Research Article


The process of black hole evaporation resulting from the Hawking effect has generated an intense controversy regarding its potential conflict with quantum mechanics’ unitary evolution. A recent set of works by a collaboration involving one of us, have revised the controversy with the aims of, on one hand, clarifying some conceptual issues surrounding it, and, at the same time, arguing that collapse theories have the potential to offer a satisfactory resolution of the so-called paradox. Here we show an explicit calculation supporting this claim using a simplified model of black hole creation and evaporation, known as the CGHS model, together with a dynamical reduction theory, known as CSL, and some speculative, but seemingly natural ideas about the role of quantum gravity in connection with the would-be singularity. This work represents a specific realization of general ideas first discussed in Okon and Sudarsky (Found Phys 44:114–143, 2014) and a complete and detailed analysis of a model first considered in Modak et al. (Phys Rev D 91(12):124009, 2015).


Black hole evaporation Information paradox Measurement problem Quantum foundation 



We acknowledge useful discussions with Robert Wald, Elias Okon, Philip Pearle, Bernard Kay, George Matsas, Alejandro Perez and the participants of the meeting “Haunted Workshop: Who is afraid of Quantum Theory?”, Tepoztlán, México, 2013. IP thanks ICN-UNAM for providing visiting facilities during his sabbatical year when part of this work was done. Two of the authors, SKM and LO, are supported by DGAPA postdoctoral fellowships from UNAM. We acknowledge partial financial support from DGAPA-UNAM projects IN107412 (DS), and CONACyT project 101712 (DS).


  1. 1.
    Okon, E., Sudarsky, D.: Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44, 114–143 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar
  2. 2.
    Modak, S.K., Ortz, L., Pea, I., Sudarsky, D.: Non-paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91(12), 124009 (2015)CrossRefADSGoogle Scholar
  3. 3.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]Google Scholar
  4. 4.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Okon, E., Sudarsky, D.: The black hole information paradox and the collapse of the wave function. arXiv:1406.2011 [gr-qc]
  6. 6.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [ hep-th/9711200]
  7. 7.
    Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP 0304, 021 (2003). [ hep-th/0106112]
  8. 8.
    Strominger, A.: The dS/CFT correspondence. JHEP 0110, 034 (2001). [ hep-th/0106113]
  9. 9.
    Kachru, S., Liu, X., Mulligan, M.: Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th]MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 1302, 062 (2013). arXiv:1207.3123 [hep-th]MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013). arXiv:1306.0533 [hep-th]
  12. 12.
    Rovelli, C., Vidotto, F.: Planck stars. arXiv:1401.6562 [gr-qc]
  13. 13.
    Mathur, S.D.: The information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). arXiv:0909.1038 [hep-th]MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Mathur, S.D.: How fuzzballs resolve the information paradox. J. Phys. Conf. Ser. 462, 012034 (2013)CrossRefADSGoogle Scholar
  15. 15.
    Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001) [ gr-qc/0102069]
  16. 16.
    Ashtekar, A., Bojowald, M.: Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 23, 391–411 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  17. 17.
    Ashtekar, A., Taveras, V., Varadarajan, M.: Information is not lost in the evaporation of 2-dimensional black holes. Phys. Rev. Lett. 100, 211302 (2008). arXiv:0801.1811 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Bojowald, M.: Information loss, made worse by quantum gravity. arXiv:1409.3157 [gr-qc]
  19. 19.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn. Addison-Wesley, Boston (1976)Google Scholar
  20. 20.
    Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992). Chapters 4 and 5Google Scholar
  21. 21.
    Bell, J.: Quantum mechanics for cosmologists. In: Quantum Gravity II. Oxford University Press, Oxford (1981)Google Scholar
  22. 22.
    Home, D.: Conceptual Foundations of Quantum Physics: An Overview from Modern Perspectives, Chapter 2. Plenum, New York (1997)CrossRefGoogle Scholar
  23. 23.
    Wigner, E.: The problem of measurement. Am. J. Phys. 31, 6 (1963)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    Lagget, A.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80 (1980)CrossRefADSGoogle Scholar
  25. 25.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
  26. 26.
    Penrose, R.: On Gravity’s Role in Quantum State Reduction. In: Callender, C. (ed.) Physics meets philosophy at the Planck scale. Cambridge University Press, Cambridge (2001)Google Scholar
  27. 27.
    Jammer, M.: Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)Google Scholar
  28. 28.
    Omnes, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  29. 29.
    Adler, S.L.: Why Decoherence has not Solved the Measurement Problem: A Response to PW Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003). arXiv:quant-ph/0112095 CrossRefGoogle Scholar
  30. 30.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003). arXiv:quant-ph/0302164 MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Ghirardi, G.: Collapse Theories. The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N. Zalta (ed.). (2011). Accessed 1 Aug 2015
  32. 32.
    Ghirardi, G.: Bohm’s theory versus dynamical reduction. In: Cushing, J.T., et al. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal, pp. 353–377. Kluwer Academic Publishers, Berlin (1996)CrossRefGoogle Scholar
  33. 33.
    Durr, D., Goldstein, S., Zangh, N.: Bohmian mechanics and the meaning of the wave function. In: Cohen, R.S., Horne, M., Stachel, J. (eds.) Experimental Metaphysics-Quantum Mechanical Studies for Abner Shimony, Volume One; Boston Studies in the Philosophy of Science 193. Kluwer Academic Publishers, Berlin (1997)Google Scholar
  34. 34.
    Bell, J.S.: On the impossible pilot wave. Found. Phys. 12, 989–999 (1982)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Fuchs, C., Peres, A.: Quantum theory needs no ‘interpretation’. Phys. Today 53(3), 70–71 (2000)CrossRefGoogle Scholar
  37. 37.
    Lombardi, O., Dieks, D.: Modal Interpretations of Quantum Mechanics. The Stanford Encyclopedia of Philosophy, Stanford (2014)Google Scholar
  38. 38.
    Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)CrossRefGoogle Scholar
  39. 39.
    Zurek, W.: Decoherence and the transition from quantum to classical. Phys. Today 44(10) (1991)Google Scholar
  40. 40.
    Kent, A.: Against Many-Worlds Interpretations.
  41. 41.
    Brown, H., Wallace, D.: Solving the measurement problem: de Broglie-Bohm loses out to Everett. Found. Phys. 35, 517–540 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  42. 42.
    Bub, J.: Interpreting the Quantum World, chapter 8, pp. 212–236. Cambridge (1997). (Rather critical discussion of the decoherence-based approaches)Google Scholar
  43. 43.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  44. 44.
    Bell, J.S.: Against ‘measurement. Phys. World 3, 33 (1990)CrossRefGoogle Scholar
  45. 45.
    Maudlin, T.: Three measurement problems. Topoi 14(1), 715 (1995)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453 (1966)MathSciNetCrossRefADSzbMATHGoogle Scholar
  47. 47.
    Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976)MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic and microscopic systems. In: Accardi, A.L. (ed.) Quantum Probability and Applications, pp. 223–232. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  49. 49.
    Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)MathSciNetCrossRefADSzbMATHGoogle Scholar
  50. 50.
    Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)CrossRefADSGoogle Scholar
  51. 51.
    Ghirardi, G., Pearle, P., Rimini, A.: Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 7889 (1990)MathSciNetGoogle Scholar
  52. 52.
    Bassi, A., Lochan, K., Satin, S., Singh, T., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)CrossRefADSGoogle Scholar
  53. 53.
    Pearle, P.: Collapse models. arXiv:quant-ph/9901077
  54. 54.
    Pearle, P.: Collapse Miscellany. arXiv:1209.5082 [quant-ph]
  55. 55.
    Callan, C.G., Giddings, S.B., Harvey, J.A., Strominger, A.: Evanescent black holes. Phys. Rev. D 45, R1005 (1992)MathSciNetCrossRefADSGoogle Scholar
  56. 56.
    Giddings, S.B.: Quantum mechanics of black holes. arXiv:hep-th/9412138v1
  57. 57.
    Strominger, A.: Les Houches Lectures on Black Holes. arXiv:hep-th/9501071v1
  58. 58.
    Benachenhou, F.: Black hole evaporation: a survey. hep-th/9412189
  59. 59.
    Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)CrossRefGoogle Scholar
  60. 60.
    Susskind, L., Thorlacius, L.: Hawking radiation and back-reaction. Nucl. Phys. B 382, 123–147 (1992)MathSciNetCrossRefADSGoogle Scholar
  61. 61.
    Russo, J.G., Susskind, L., Thorlacius, L.: The endpoint of Hawking radiation. Phys. Rev. D 46, 3444 (1992)MathSciNetCrossRefADSGoogle Scholar
  62. 62.
    Ashtekar, A., Pretorius, F., Ramazanoglu, F.M.: Evaporation of 2-Dimensional Black Holes. Phys. Rev. D 83, 044040 (2011). arXiv:1012.0077 [gr-qc]CrossRefADSGoogle Scholar
  63. 63.
    Kuchar, K.V., Romano, J.D., Varadarajan, M.: Dirac constraint quantization of a dilatonic model of gravitational collapse. Phys. Rev. D 55, 795 (1997). gr-qc/9608011 MathSciNetCrossRefADSGoogle Scholar
  64. 64.
    Varadarajan, M.: Quantum gravity effects in the CGHS model of collapse to a black hole. Phys. Rev. D 57, 3463 (1998). gr-qc/9801058 MathSciNetCrossRefADSGoogle Scholar
  65. 65.
    Giddings, S.B., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev. D 46, 2486 (1992)MathSciNetCrossRefADSGoogle Scholar
  66. 66.
    Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy-momentum tensor near an evaporating black hole. Phys. Rev. D 13, 2720 (1976)CrossRefADSGoogle Scholar
  67. 67.
    Hiscock, W.A.: Models of evaporating black holes. I. Phys. Rev. D 23, 2813 (1981)MathSciNetCrossRefADSGoogle Scholar
  68. 68.
    Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, Cambridge (2007)Google Scholar
  69. 69.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994)zbMATHGoogle Scholar
  70. 70.
    Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)CrossRefADSGoogle Scholar
  71. 71.
    Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)Google Scholar
  72. 72.
    Pearle, P.: Toward a relativistic theory of statevector reduction. In: Miller, A. (ed.) Sixty-Two Years of Uncertainty, pp. 193–214. Plenum, New York (1990)CrossRefGoogle Scholar
  73. 73.
    Ghirardi, G., Grassi, R., Pearle, P.: Relativistic dynamical reduction models: general framework and examples. Found. Phys. (J.S. Bell’s 60th birthday issue) 20, 1271 (1990)MathSciNetADSGoogle Scholar
  74. 74.
    Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 821 (2006)CrossRefADSGoogle Scholar
  75. 75.
    Tumulka, R.: On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A 462, 1897 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  76. 76.
    Bedingham, D.J.: Relativistic state reduction model. J. Phys. Conf. Ser. 306, 012034 (2011)CrossRefADSGoogle Scholar
  77. 77.
    Bedingham, D.J.: Relativistic state reduction dynamics. Found. Phys. 41, 686 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  78. 78.
    Pearle, P.: A Relativistic Dynamical Collapse Model. arXiv:1412.6723 [quant-ph]
  79. 79.
    Banks, T., Susskind, L., Peskin, M.E.: Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984)MathSciNetCrossRefADSGoogle Scholar
  80. 80.
    Unruh, W.G., Wald, R.M.: On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176–2182 (1995)MathSciNetCrossRefADSGoogle Scholar
  81. 81.
    Penrose, R.: Time asymmetry and quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity II, p. 244. Oxford University Press, Oxford (1981)Google Scholar
  82. 82.
    Perez, A., Sahlmman, H., Sudarsky, D.: On the quantum mechanical origin of the seeds of cosmic structure. Class. Quant. Grav. 23, 2317 (2006)CrossRefADSzbMATHGoogle Scholar
  83. 83.
    Sudarsky, D.: Shortcomings in the understanding of why cosmological perturbations look classical. Int. J. Modern Phys. D 20, 509 (2011). arXiv:0906.0315 [gr-qc]MathSciNetCrossRefADSzbMATHGoogle Scholar
  84. 84.
    Landau, S.J., Scoccola, C.G., Sudarsky, D.: Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D 85, 123001 (2012). arXiv:1112.1830 [astro-ph.CO]CrossRefADSGoogle Scholar
  85. 85.
    León García, G., Landau, S.J., Sudarsky, D.: Quantum origin of the primordial fluctuation spectrum and its statistics. Phys. Rev. D 88, 023526 (2013). arXiv:1107.3054 [astro-ph.CO]CrossRefADSGoogle Scholar
  86. 86.
    Diez-Tejedor, A., Sudarsky, D.: Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP 045, 1207 (2012). arXiv:1108.4928 [gr-qc]Google Scholar
  87. 87.
    Cañate, P., Pearle, P., Sudarsky, D.: CSL quantum origin of the primordial fluctuation. Phys. Rev. D 87, 104024 (2013). arXiv:1211.3463[gr-qc]CrossRefADSGoogle Scholar
  88. 88.
    Décanini, Y., Folacci, A.: Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension. Phys. Rev. D 78, 044025 (2008)MathSciNetCrossRefADSGoogle Scholar
  89. 89.
    Salehi, H., Bisabr, Y.: Hadamard states and two-dimensional gravity. Int. J. Mod. Phys. A 16, 3699 (2001)MathSciNetCrossRefADSzbMATHGoogle Scholar
  90. 90.
    Synge, J.L.: Relativity: The General Theory. North-Holland Publishing Company, Amsterdam (1971)Google Scholar
  91. 91.
    Diosi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 58, 1699 (1998)MathSciNetCrossRefADSGoogle Scholar
  92. 92.
    Aharonov, Y., Oppenheim, J., Popescu, S., Reznik, B., Unruh, W.G.: Measurement of time of arrival in quantum mechanics. Phys. Rev. A 57, 4130 (1998)MathSciNetCrossRefADSGoogle Scholar
  93. 93.
    Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B44, 1 (1966); Erratum-ibid. B48, 463 (1967)Google Scholar
  94. 94.
    Page, D.N., Geilker, C.D.: Phys. Rev. Lett. 47, 979 (1981)MathSciNetCrossRefADSGoogle Scholar
  95. 95.
    Carlip, S.: Is quantum gravity necessary? Class. Quant. Grav. 25, 154010 (2008)MathSciNetCrossRefADSGoogle Scholar
  96. 96.
    Bedingham, D.J.: Dynamical state reduction in an EPR experiment. arXiv:0907.2327 [quant-ph]
  97. 97.
    Ghirardi, G.C.: Properties and events in a relativistic context: revisiting the dynamical reduction program. Found. Phys. Lett. 9, 313 (1996)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Letter Al Nuovo Cimento 27, 293 (1980)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Ghirardi, G.C., Grassi, R., Butterfield, J., Fleming, G.N.: Parameter dependence and outcome dependence in dynamic models for state-vector reduction. Found. Phys. 23, 341 (1993)MathSciNetCrossRefADSGoogle Scholar
  100. 100.
    Ghirardi, G.C., Grassi, R.: Outcome predictions and property attribution: the EPR argument reconsidered. Stud. History Philos. Modern Phys. 25, 397 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sujoy K. Modak
    • 1
  • Leonardo Ortíz
    • 1
  • Igor Peña
    • 1
    • 2
  • Daniel Sudarsky
    • 1
  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Plantel Casa LibertadUniversidad Autónoma de la Ciudad de MéxicoMéxicoMéxico

Personalised recommendations