# Black hole evaporation: information loss but no paradox

- 349 Downloads
- 11 Citations

## Abstract

The process of black hole evaporation resulting from the Hawking effect has generated an intense controversy regarding its potential conflict with quantum mechanics’ unitary evolution. A recent set of works by a collaboration involving one of us, have revised the controversy with the aims of, on one hand, clarifying some conceptual issues surrounding it, and, at the same time, arguing that collapse theories have the potential to offer a satisfactory resolution of the so-called paradox. Here we show an explicit calculation supporting this claim using a simplified model of black hole creation and evaporation, known as the CGHS model, together with a dynamical reduction theory, known as CSL, and some speculative, but seemingly natural ideas about the role of quantum gravity in connection with the would-be singularity. This work represents a specific realization of general ideas first discussed in Okon and Sudarsky (Found Phys 44:114–143, 2014) and a complete and detailed analysis of a model first considered in Modak et al. (Phys Rev D 91(12):124009, 2015).

## Keywords

Black hole evaporation Information paradox Measurement problem Quantum foundation## Notes

### Acknowledgments

We acknowledge useful discussions with Robert Wald, Elias Okon, Philip Pearle, Bernard Kay, George Matsas, Alejandro Perez and the participants of the meeting “Haunted Workshop: Who is afraid of Quantum Theory?”, Tepoztlán, México, 2013. IP thanks ICN-UNAM for providing visiting facilities during his sabbatical year when part of this work was done. Two of the authors, SKM and LO, are supported by DGAPA postdoctoral fellowships from UNAM. We acknowledge partial financial support from DGAPA-UNAM projects IN107412 (DS), and CONACyT project 101712 (DS).

## References

- 1.Okon, E., Sudarsky, D.: Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys.
**44**, 114–143 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar - 2.Modak, S.K., Ortz, L., Pea, I., Sudarsky, D.: Non-paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D
**91**(12), 124009 (2015)CrossRefADSGoogle Scholar - 3.Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys.
**43**, 199 (1975) [Erratum-ibid. 46, 206 (1976)]Google Scholar - 4.Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D
**14**, 2460 (1976)MathSciNetCrossRefADSGoogle Scholar - 5.Okon, E., Sudarsky, D.: The black hole information paradox and the collapse of the wave function. arXiv:1406.2011 [gr-qc]
- 6.Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys.
**2**, 231 (1998). [ hep-th/9711200] - 7.Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP
**0304**, 021 (2003). [ hep-th/0106112] - 8.Strominger, A.: The dS/CFT correspondence. JHEP
**0110**, 034 (2001). [ hep-th/0106113] - 9.Kachru, S., Liu, X., Mulligan, M.: Gravity duals of Lifshitz-like fixed points. Phys. Rev. D
**78**, 106005 (2008). arXiv:0808.1725 [hep-th]MathSciNetCrossRefADSGoogle Scholar - 10.Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP
**1302**, 062 (2013). arXiv:1207.3123 [hep-th]MathSciNetCrossRefADSGoogle Scholar - 11.Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys.
**61**, 781 (2013). arXiv:1306.0533 [hep-th] - 12.Rovelli, C., Vidotto, F.: Planck stars. arXiv:1401.6562 [gr-qc]
- 13.Mathur, S.D.: The information paradox: a pedagogical introduction. Class. Quant. Grav.
**26**, 224001 (2009). arXiv:0909.1038 [hep-th]MathSciNetCrossRefADSGoogle Scholar - 14.Mathur, S.D.: How fuzzballs resolve the information paradox. J. Phys. Conf. Ser.
**462**, 012034 (2013)CrossRefADSGoogle Scholar - 15.Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett.
**86**, 5227 (2001) [ gr-qc/0102069] - 16.Ashtekar, A., Bojowald, M.: Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav.
**23**, 391–411 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar - 17.Ashtekar, A., Taveras, V., Varadarajan, M.: Information is not lost in the evaporation of 2-dimensional black holes. Phys. Rev. Lett.
**100**, 211302 (2008). arXiv:0801.1811 [gr-qc]MathSciNetCrossRefADSGoogle Scholar - 18.Bojowald, M.: Information loss, made worse by quantum gravity. arXiv:1409.3157 [gr-qc]
- 19.d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn. Addison-Wesley, Boston (1976)Google Scholar
- 20.Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992). Chapters 4 and 5Google Scholar
- 21.Bell, J.: Quantum mechanics for cosmologists. In: Quantum Gravity II. Oxford University Press, Oxford (1981)Google Scholar
- 22.Home, D.: Conceptual Foundations of Quantum Physics: An Overview from Modern Perspectives, Chapter 2. Plenum, New York (1997)CrossRefGoogle Scholar
- 23.Wigner, E.: The problem of measurement. Am. J. Phys.
**31**, 6 (1963)MathSciNetCrossRefADSzbMATHGoogle Scholar - 24.Lagget, A.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl.
**69**, 80 (1980)CrossRefADSGoogle Scholar - 25.Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
- 26.Penrose, R.: On Gravity’s Role in Quantum State Reduction. In: Callender, C. (ed.) Physics meets philosophy at the Planck scale. Cambridge University Press, Cambridge (2001)Google Scholar
- 27.Jammer, M.: Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)Google Scholar
- 28.Omnes, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
- 29.Adler, S.L.: Why Decoherence has not Solved the Measurement Problem: A Response to PW Anderson. Stud. Hist. Philos. Mod. Phys.
**34**, 135–142 (2003). arXiv:quant-ph/0112095 CrossRefGoogle Scholar - 30.Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep.
**379**, 257 (2003). arXiv:quant-ph/0302164 MathSciNetCrossRefADSzbMATHGoogle Scholar - 31.Ghirardi, G.: Collapse Theories. The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N. Zalta (ed.). http://plato.stanford.edu/archives/win2011/entries/qmcollapse/ (2011). Accessed 1 Aug 2015
- 32.Ghirardi, G.: Bohm’s theory versus dynamical reduction. In: Cushing, J.T., et al. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal, pp. 353–377. Kluwer Academic Publishers, Berlin (1996)CrossRefGoogle Scholar
- 33.Durr, D., Goldstein, S., Zangh, N.: Bohmian mechanics and the meaning of the wave function. In: Cohen, R.S., Horne, M., Stachel, J. (eds.) Experimental Metaphysics-Quantum Mechanical Studies for Abner Shimony, Volume One; Boston Studies in the Philosophy of Science 193. Kluwer Academic Publishers, Berlin (1997)Google Scholar
- 34.Bell, J.S.: On the impossible pilot wave. Found. Phys.
**12**, 989–999 (1982)MathSciNetCrossRefADSGoogle Scholar - 35.Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012)CrossRefzbMATHGoogle Scholar
- 36.Fuchs, C., Peres, A.: Quantum theory needs no ‘interpretation’. Phys. Today
**53**(3), 70–71 (2000)CrossRefGoogle Scholar - 37.Lombardi, O., Dieks, D.: Modal Interpretations of Quantum Mechanics. The Stanford Encyclopedia of Philosophy, Stanford (2014)Google Scholar
- 38.Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)CrossRefGoogle Scholar
- 39.Zurek, W.: Decoherence and the transition from quantum to classical. Phys. Today
**44**(10) (1991)Google Scholar - 40.Kent, A.: Against Many-Worlds Interpretations. http://xxx.arxiv.org/abs/gr-qc/9703089
- 41.Brown, H., Wallace, D.: Solving the measurement problem: de Broglie-Bohm loses out to Everett. Found. Phys.
**35**, 517–540 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar - 42.Bub, J.: Interpreting the Quantum World, chapter 8, pp. 212–236. Cambridge (1997). (Rather critical discussion of the decoherence-based approaches)Google Scholar
- 43.Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
- 44.Bell, J.S.: Against ‘measurement. Phys. World
**3**, 33 (1990)CrossRefGoogle Scholar - 45.Maudlin, T.: Three measurement problems. Topoi
**14**(1), 715 (1995)MathSciNetCrossRefGoogle Scholar - 46.Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys.
**38**, 453 (1966)MathSciNetCrossRefADSzbMATHGoogle Scholar - 47.Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D
**13**, 857 (1976)MathSciNetCrossRefADSGoogle Scholar - 48.Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic and microscopic systems. In: Accardi, A.L. (ed.) Quantum Probability and Applications, pp. 223–232. Springer, Heidelberg (1985)CrossRefGoogle Scholar
- 49.Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**34**, 470 (1986)MathSciNetCrossRefADSzbMATHGoogle Scholar - 50.Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A
**39**, 2277–2289 (1989)CrossRefADSGoogle Scholar - 51.Ghirardi, G., Pearle, P., Rimini, A.: Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A
**42**, 7889 (1990)MathSciNetGoogle Scholar - 52.Bassi, A., Lochan, K., Satin, S., Singh, T., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys.
**85**, 471 (2013)CrossRefADSGoogle Scholar - 53.Pearle, P.: Collapse models. arXiv:quant-ph/9901077
- 54.Pearle, P.: Collapse Miscellany. arXiv:1209.5082 [quant-ph]
- 55.Callan, C.G., Giddings, S.B., Harvey, J.A., Strominger, A.: Evanescent black holes. Phys. Rev. D
**45**, R1005 (1992)MathSciNetCrossRefADSGoogle Scholar - 56.Giddings, S.B.: Quantum mechanics of black holes. arXiv:hep-th/9412138v1
- 57.Strominger, A.: Les Houches Lectures on Black Holes. arXiv:hep-th/9501071v1
- 58.Benachenhou, F.: Black hole evaporation: a survey. hep-th/9412189
- 59.Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)CrossRefGoogle Scholar
- 60.Susskind, L., Thorlacius, L.: Hawking radiation and back-reaction. Nucl. Phys. B
**382**, 123–147 (1992)MathSciNetCrossRefADSGoogle Scholar - 61.Russo, J.G., Susskind, L., Thorlacius, L.: The endpoint of Hawking radiation. Phys. Rev. D
**46**, 3444 (1992)MathSciNetCrossRefADSGoogle Scholar - 62.Ashtekar, A., Pretorius, F., Ramazanoglu, F.M.: Evaporation of 2-Dimensional Black Holes. Phys. Rev. D
**83**, 044040 (2011). arXiv:1012.0077 [gr-qc]CrossRefADSGoogle Scholar - 63.Kuchar, K.V., Romano, J.D., Varadarajan, M.: Dirac constraint quantization of a dilatonic model of gravitational collapse. Phys. Rev. D
**55**, 795 (1997). gr-qc/9608011 MathSciNetCrossRefADSGoogle Scholar - 64.Varadarajan, M.: Quantum gravity effects in the CGHS model of collapse to a black hole. Phys. Rev. D
**57**, 3463 (1998). gr-qc/9801058 MathSciNetCrossRefADSGoogle Scholar - 65.Giddings, S.B., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev. D
**46**, 2486 (1992)MathSciNetCrossRefADSGoogle Scholar - 66.Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy-momentum tensor near an evaporating black hole. Phys. Rev. D
**13**, 2720 (1976)CrossRefADSGoogle Scholar - 67.Hiscock, W.A.: Models of evaporating black holes. I. Phys. Rev. D
**23**, 2813 (1981)MathSciNetCrossRefADSGoogle Scholar - 68.Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime. Cambridge University Press, Cambridge (2007)Google Scholar
- 69.Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994)zbMATHGoogle Scholar
- 70.Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett.
**49**, 91 (1982)CrossRefADSGoogle Scholar - 71.Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)Google Scholar
- 72.Pearle, P.: Toward a relativistic theory of statevector reduction. In: Miller, A. (ed.) Sixty-Two Years of Uncertainty, pp. 193–214. Plenum, New York (1990)CrossRefGoogle Scholar
- 73.Ghirardi, G., Grassi, R., Pearle, P.: Relativistic dynamical reduction models: general framework and examples. Found. Phys. (J.S. Bell’s 60th birthday issue)
**20**, 1271 (1990)MathSciNetADSGoogle Scholar - 74.Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys.
**125**, 821 (2006)CrossRefADSGoogle Scholar - 75.Tumulka, R.: On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A
**462**, 1897 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar - 76.Bedingham, D.J.: Relativistic state reduction model. J. Phys. Conf. Ser.
**306**, 012034 (2011)CrossRefADSGoogle Scholar - 77.Bedingham, D.J.: Relativistic state reduction dynamics. Found. Phys.
**41**, 686 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar - 78.Pearle, P.: A Relativistic Dynamical Collapse Model. arXiv:1412.6723 [quant-ph]
- 79.Banks, T., Susskind, L., Peskin, M.E.: Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B
**244**, 125 (1984)MathSciNetCrossRefADSGoogle Scholar - 80.Unruh, W.G., Wald, R.M.: On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D
**52**, 2176–2182 (1995)MathSciNetCrossRefADSGoogle Scholar - 81.Penrose, R.: Time asymmetry and quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity II, p. 244. Oxford University Press, Oxford (1981)Google Scholar
- 82.Perez, A., Sahlmman, H., Sudarsky, D.: On the quantum mechanical origin of the seeds of cosmic structure. Class. Quant. Grav.
**23**, 2317 (2006)CrossRefADSzbMATHGoogle Scholar - 83.Sudarsky, D.: Shortcomings in the understanding of why cosmological perturbations look classical. Int. J. Modern Phys. D
**20**, 509 (2011). arXiv:0906.0315 [gr-qc]MathSciNetCrossRefADSzbMATHGoogle Scholar - 84.Landau, S.J., Scoccola, C.G., Sudarsky, D.: Cosmological constraints on nonstandard inflationary quantum collapse models. Phys. Rev. D
**85**, 123001 (2012). arXiv:1112.1830 [astro-ph.CO]CrossRefADSGoogle Scholar - 85.León García, G., Landau, S.J., Sudarsky, D.: Quantum origin of the primordial fluctuation spectrum and its statistics. Phys. Rev. D
**88**, 023526 (2013). arXiv:1107.3054 [astro-ph.CO]CrossRefADSGoogle Scholar - 86.Diez-Tejedor, A., Sudarsky, D.: Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP
**045**, 1207 (2012). arXiv:1108.4928 [gr-qc]Google Scholar - 87.Cañate, P., Pearle, P., Sudarsky, D.: CSL quantum origin of the primordial fluctuation. Phys. Rev. D
**87**, 104024 (2013). arXiv:1211.3463[gr-qc]CrossRefADSGoogle Scholar - 88.Décanini, Y., Folacci, A.: Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension. Phys. Rev. D
**78**, 044025 (2008)MathSciNetCrossRefADSGoogle Scholar - 89.Salehi, H., Bisabr, Y.: Hadamard states and two-dimensional gravity. Int. J. Mod. Phys. A
**16**, 3699 (2001)MathSciNetCrossRefADSzbMATHGoogle Scholar - 90.Synge, J.L.: Relativity: The General Theory. North-Holland Publishing Company, Amsterdam (1971)Google Scholar
- 91.Diosi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A
**58**, 1699 (1998)MathSciNetCrossRefADSGoogle Scholar - 92.Aharonov, Y., Oppenheim, J., Popescu, S., Reznik, B., Unruh, W.G.: Measurement of time of arrival in quantum mechanics. Phys. Rev. A
**57**, 4130 (1998)MathSciNetCrossRefADSGoogle Scholar - 93.Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cim.
**B44**, 1 (1966); Erratum-ibid.**B48**, 463 (1967)Google Scholar - 94.Page, D.N., Geilker, C.D.: Phys. Rev. Lett.
**47**, 979 (1981)MathSciNetCrossRefADSGoogle Scholar - 95.Carlip, S.: Is quantum gravity necessary? Class. Quant. Grav.
**25**, 154010 (2008)MathSciNetCrossRefADSGoogle Scholar - 96.Bedingham, D.J.: Dynamical state reduction in an EPR experiment. arXiv:0907.2327 [quant-ph]
- 97.Ghirardi, G.C.: Properties and events in a relativistic context: revisiting the dynamical reduction program. Found. Phys. Lett.
**9**, 313 (1996)MathSciNetCrossRefGoogle Scholar - 98.Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Letter Al Nuovo Cimento
**27**, 293 (1980)MathSciNetCrossRefGoogle Scholar - 99.Ghirardi, G.C., Grassi, R., Butterfield, J., Fleming, G.N.: Parameter dependence and outcome dependence in dynamic models for state-vector reduction. Found. Phys.
**23**, 341 (1993)MathSciNetCrossRefADSGoogle Scholar - 100.Ghirardi, G.C., Grassi, R.: Outcome predictions and property attribution: the EPR argument reconsidered. Stud. History Philos. Modern Phys.
**25**, 397 (1994)MathSciNetCrossRefGoogle Scholar