Conformal traceless decomposition of lagrange multiplier modified Hořava–Lifshitz Gravity

Research Article


We introduce conformal traceless decomposition in Lagrange Multiplier modified RFDiff invariant Hořava–Lifshitz gravity. We perform Hamiltonian analysis of given action and determine the action for the physical degrees of freedom.


Horava–Lifschitz gravity Hamiltonian formalism Models of gravity 


  1. 1.
    Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]
  2. 2.
    Horava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009). arXiv:0812.4287 [hep-th]
  3. 3.
    Horava, P.: Quantum criticality and Yang–Mills gauge theory. Phys. Lett. B 694 (2010). arXiv:0811.2217 [hep-th]
  4. 4.
    Horava, P.: General covariance in gravity at a Lifshitz point. Class. Quant. Grav. 28, 114012 (2011) arXiv:1101.1081 [hep-th]
  5. 5.
    York, Jr. J.W.: Conformal ’thin sandwich’ data for the initial-value problem. Phys. Rev. Lett. 82, 1350 (1999). gr-qc/9810051
  6. 6.
    Brown, J.D.: Conformal invariance and the conformal-traceless decomposition of the gravitational field. Phys. Rev. D 71, 104011 (2005). gr-qc/0501092
  7. 7.
    Kluson, J.: Lagrange multiplier modified Horava–Lifshitz gravity. Eur. Phys. J. C 71, 1820 (2011). arXiv:1101.5880 [hep-th]
  8. 8.
    Kluson, J.: Hamiltonian analysis of the conformal decomposition of the gravitational field. Phys. Rev. D 86, 084001 (2012). arXiv:1206.5116 [gr-qc]
  9. 9.
    Padilla, A.: The good, the bad and the ugly....of Horava gravity. J. Phys. Conf. Ser. 259, 012033 (2010). arXiv:1009.4074 [hep-th]
  10. 10.
    Mukohyama, S.: Horava–Lifshitz cosmology: a review. Class. Quant. Grav. 27, 223101 (2010). arXiv:1007.5199 [hep-th]
  11. 11.
    Weinfurtner, S., Sotiriou, T.P., Visser, M.: Projectable Horava–Lifshitz gravity in a nutshell. J. Phys. Conf. Ser. 222, 012054 (2010). arXiv:1002.0308 [gr-qc]
  12. 12.
    Blas, D., Pujolas, O., Sibiryakov, S.: Models of non-relativistic quantum gravity: the good, the bad and the healthy. JHEP 1104, 18 (2011). arXiv:1007.3503 [hep-th]
  13. 13.
    Kluson, J.: Horava–Lifshitz gravity and ghost condensation. Phys. Rev. D 82, 124011 (2010). arXiv:1008.5297 [hep-th]
  14. 14.
    Gourgoulhon, E.: 3+1 Formalism and bases of numerical relativity. arXiv:gr-qc/0703035
  15. 15.
    Horava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz Point. Phys. Rev. D 82, 064027 (2010). arXiv:1007.2410 [hep-th]
  16. 16.
    da Silva, A.M.: An alternative approach for general covariant Horava–Lifshitz gravity and matter coupling. Class. Quant. Grav. 28, 055011 (2011). arXiv:1009.4885 [hep-th]
  17. 17.
    Khoury, J., Miller, G.E.J., Tolley, A.J.: On the origin of gravitational Lorentz covariance. Class. Quantum Gravity 31, 135011 (2014). arXiv:1305.0822 [hep-th]
  18. 18.
    Khoury, J., Miller, G.E.J., Tolley, A.J.: Spatially covariant theories of a transverse, traceless graviton, Part I: Formalism. Phys. Rev. D 85, 084002 (2012). arXiv:1108.1397 [hep-th]
  19. 19.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. University Press, Princeton (1992)MATHGoogle Scholar
  20. 20.
    Govaerts, J.: The quantum geometer’s universe: particles, interactions and topology. arXiv:hep-th/0207276
  21. 21.
    Govaerts, J.: Hamiltonian Quantization and Constrained Dynamics. Leuven Notes in Mathematical and Theoretical Physics, B4. University Press, Leuven, Belgium (1991)Google Scholar
  22. 22.
    York Jr, J.W.: Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26, 1656 (1971)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Huang, Y., Wang, A.: Stability, ghost, and strong coupling in nonrelativistic general covariant theory of gravity with \(\lambda \ne 1\). Phys. Rev. D 83, 104012 (2011). arXiv:1011.0739 [hep-th]
  24. 24.
    Das, S., Ghosh, S.: Gauge invariant extension of linearized Horava gravity. Mod. Phys. Lett. A 26, 2793 (2011). arXiv:1104.1975 [gr-qc]

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations