Emerging the dark sector from thermodynamics of cosmological systems with constant pressure

  • Alejandro Aviles
  • Norman Cruz
  • Jaime Klapp
  • Orlando Luongo
Research Article


We investigate the thermodynamics of general fluids that have the constriction that their pressure is constant. We first consider the more general thermodynamic properties of this class of fluids finding the important result that for them adiabatic and isothermal processes should coincide. We therefore study their behaviors in curved space-times where local thermal equilibrium can be appealed. Thus, we show that this dark fluid degenerates with the dark sector of the \(\Lambda \)CDM model only in the case of adiabatic evolution. We demonstrate that, adding dissipative processes, a phantom behavior can occur and finally we further highlight that an arbitrary decomposition of the dark sector, into ad hoc dark matter and dark energy terms, may give rise to phantom dark energy, whereas the whole dark sector remains non-phantom.


Dark sector Thermodynamics of dark energy Dark degeneracy 



A. A. and O. L. want to thank prof. S. Capozziello and G. Carmona for useful discussions. A. A. acknowledges the hospitality of the Departamento de Física, Universidad de Santiago de Chile, where part of this work was done. A. A. and J. K. are financially supported by the project CONACyT-EDOMEX-2011-C01-165873 (ABACUS-CINVESTAV). N. C. acknowledges the support to this research by CONICYT through Grant Nos. 1140238. O. L. is financially supported by the European PONa3 00038F1 KM3NeT (INFN) Project.


  1. 1.
    Cervantes-Cota, J.L., Smoot, G.: Cosmology today—a brief review. AIP Conf. Proc. 1396, 28–52 (2011). arXiv:1107.1789 CrossRefADSGoogle Scholar
  2. 2.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys D15, 1753–1936 (2006). hep-th/0603057 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Kunz, M.: The dark degeneracy: on the number and nature of dark components. Phys. Rev D80, 123001 (2009). astro-ph/0702615 ADSGoogle Scholar
  4. 4.
    Hu, W., Eisenstein, D.J.: The structure of structure formation theories. Phys. Rev. D59, 083509 (1999). astro-ph/9809368 ADSGoogle Scholar
  5. 5.
    Aviles, A., Cervantes-Cota, J.L.: The dark degeneracy and interacting cosmic components. Phys. Rev. D84, 083515 (2011). arXiv:1108.2457 ADSGoogle Scholar
  6. 6.
    Luongo, O., Quevedo, H.: A unified dark energy model from a vanishing speed of sound with emergent cosmological constant. Int. J. Mod. Phys. D23, 1450012 (2014)CrossRefADSGoogle Scholar
  7. 7.
    Xu, L., Wang, Y., Noh, H.: Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys. Rev. D85, 043003 (2012). arXiv:1112.3701 ADSGoogle Scholar
  8. 8.
    Bielefeld, J., Caldwell, R.R., Linder, E.V.: Dark energy scaling from dark matter to acceleration. Phys. Rev. D90, 043015 (2014). arXiv:1404.2273 ADSGoogle Scholar
  9. 9.
    Ballesteros, G., Lesgourgues, J.: Dark energy with non-adiabatic sound speed: initial conditions and detectability. JCAP 014, 1010 (2010). arXiv:1004.5509 Google Scholar
  10. 10.
    Piattella, O.F., Fabris, J.C., Bilic, N.: Note on the thermodynamics and the speed of sound of a scalar field. Class. Quant. Gravit. 31, 055006 (2014). arXiv:1309.4282 CrossRefADSGoogle Scholar
  11. 11.
    Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B511, 265–268 (2001). gr-qc/0103004 CrossRefADSGoogle Scholar
  12. 12.
    Bento, M., Bertolami, O., Sen, A.: Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D66, 043507 (2002). gr-qc/0202064 ADSGoogle Scholar
  13. 13.
    Bilic, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B535, 17–21 (2002). astro-ph/0111325 CrossRefADSGoogle Scholar
  14. 14.
    Fabris, J.C., Goncalves, S., de Sa Ribeiro, R.: Bulk viscosity driving the acceleration of the Universe. Gen. Relativ. Gravit. 38, 495–506 (2006). astro-ph/0503362 CrossRefADSzbMATHGoogle Scholar
  15. 15.
    Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavon, D.: Cosmic anti-friction and accelerated expansion. Phys. Rev. D64, 063501 (2001). astro-ph/0009353 ADSGoogle Scholar
  16. 16.
    Avelino, A., Nucamendi, U.: Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe? JCAP 0904, 006 (2009). arXiv:0811.3253 CrossRefADSGoogle Scholar
  17. 17.
    Li, B., Barrow, J.D.: Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D79, 103521 (2009). arXiv:0902.3163 ADSGoogle Scholar
  18. 18.
    Avelino, A., Nucamendi, U.: Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe. JCAP 1008, 009 (2010). arXiv:1002.3605 CrossRefADSGoogle Scholar
  19. 19.
    Piattella, O.F., Fabris, J.C., Zimdahl, W.: Bulk viscous cosmology with causal transport theory. JCAP 1105, 029 (2011). arXiv:1103.1328 CrossRefADSGoogle Scholar
  20. 20.
    Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58, 919–924 (1940)CrossRefADSGoogle Scholar
  21. 21.
    Muller, I.: Zum paradoxon der Warmeleitungstheorie. Z. Phys. 198, 329 (1967)CrossRefADSGoogle Scholar
  22. 22.
    Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310–331 (1976)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Israel, W., Stewart, J.: Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341–372 (1979)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Pavon, D., Jou, D., Casas-Vazquez, J.: On a covariant formulation of dissipative phenomena. Ann. l’inst. Henri Poincar (A) 36, 79 (1982)MathSciNetGoogle Scholar
  25. 25.
    Hiscock, W., Lindblom, L.: Stability and causality in dissipative relativistic fluids. Ann. Phys. 151, 466–496 (1983)CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lima, J., Alcaniz, J.S.: Thermodynamics and spectral distribution of dark energy. Phys. Lett. B600, 191 (2004). astro-ph/0402265 CrossRefADSGoogle Scholar
  27. 27.
    Gonzalez-Diaz, P.F., Siguenza, C.L.: Phantom thermodynamics. Nucl. Phys. B697, 363–386 (2004). astro-ph/0407421 CrossRefADSGoogle Scholar
  28. 28.
    Pereira, S., Lima, J.: On phantom thermodynamics. Phys. Lett. B669, 266–270 (2008). arXiv:0806.0682 CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Myung, Y.S.: On phantom thermodynamics with negative temperature. Phys. Lett. B671, 216–218 (2009). arXiv:0810.4385 CrossRefADSGoogle Scholar
  30. 30.
    Silva, R., Goncalves, R., Alcaniz, J., Silva, H.: Thermodynamics and dark energy. Astron. Astrophys. 537, A11 (2012). arXiv:1104.1628 CrossRefADSGoogle Scholar
  31. 31.
    Aviles, A., Bastarrachea-Almodovar, A., Campuzano, L., Quevedo, H.: Extending the generalized Chaplygin gas model by using geometrothermodynamics. Phys. Rev. D86, 063508 (2012). arXiv:1203.4637 ADSGoogle Scholar
  32. 32.
    Luongo, O., Quevedo, H.: Cosmographic study of the universe’s specific heat: a landscape for cosmology? Gen. Relativ. Gravit. 46, 1649 (2014). arXiv:1211.0626 CrossRefADSGoogle Scholar
  33. 33.
    Silva, H., Silva, R., Gonalves, R., Zhu, Z.-H., Alcaniz, J.: General treatment for dark energy thermodynamics. Phys. Rev. D88, 127302 (2013). arXiv:1312.3216 ADSGoogle Scholar
  34. 34.
    WMAP Collaboration, Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538
  35. 35.
    Planck Collaboration, Ade, P., et al.: Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076
  36. 36.
    Chuang, C.-H., Prada, F., Beutler, F., Eisenstein, D.J., Escoffier, S., et al.: The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS and LOWZ anisotropic galaxy clustering. arXiv:1312.4889
  37. 37.
    Caldwell, R.: A phantom menace? Phys. Lett. B545, 23–29 (2002). astro-ph/9908168 CrossRefADSGoogle Scholar
  38. 38.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). astro-ph/0302506 CrossRefADSGoogle Scholar
  39. 39.
    Cheng, C., Huang, Q.G.: The dark side of the Universe after Planck. Phys. Rev. D 89, 043003 (2014). astro-ph/1306.4091 ADSGoogle Scholar
  40. 40.
    Rest, A., et al.: Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey. Astrophys. J. 795, 1, 44. astro-ph/1310.3828
  41. 41.
    Shafer, D.L., Huterer, D.: Chasing the phantom: a closer look at Type Ia supernovae and the dark energy equation of state. Phys. Rev. D 89, 063510 (2014). astro-ph/1312.1688 ADSGoogle Scholar
  42. 42.
    Xia, J.-Q., Li, H., Zhang, X.: Dark energy constraints after Planck. Phys. Rev. D 88, 063501 (2013). hep-lat/0602003 ADSGoogle Scholar
  43. 43.
    Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than \({-}1\)? Phys. Rev. D68, 023509 (2003). astro-ph/0301273 ADSGoogle Scholar
  44. 44.
    Barrow, J.D.: Sudden future singularities. Class. Quant. Gravit. 21, L79–L82 (2004). gr-qc/0403084 CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. 45.
    Cataldo, M., Cruz, N., Lepe, S.: Viscous dark energy and phantom evolution. Phys. Lett. B619, 5–10 (2005). hep-th/0506153 CrossRefADSGoogle Scholar
  46. 46.
    Cruz, N., Lepe, S., Pena, F.: Dissipative generalized Chaplygin gas as phantom dark energy. Phys. Lett. B646, 177–182 (2007). gr-qc/0609013 CrossRefADSGoogle Scholar
  47. 47.
    Barranco, J., Bernal, A., Nunez, D.: Dark matter equation of state from rotational curves of galaxies. arXiv:1301.6785
  48. 48.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)CrossRefADSzbMATHMathSciNetGoogle Scholar
  49. 49.
    Liddle, A.R., Urena-Lopez, L.A.: Inflation, dark matter and dark energy in the string landscape. Phys. Rev. Lett. 97, 161301 (2006). astro-ph/0605205 CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Reyes, L.M., Aguilar, J.E.M., Urena-Lopez, L.A.: Cosmological dark fluid from five-dimensional vacuum. Phys. Rev. D84, 027503 (2011). arXiv:1107.0345 ADSGoogle Scholar
  51. 51.
    Grande, J., Pelinson, A., Sola, J.: Dark energy perturbations and cosmic coincidence. Phys. Rev. D79, 043006 (2009). arXiv:0809.3462 ADSGoogle Scholar
  52. 52.
    Linder, E.V., Scherrer, R.J.: Aetherizing lambda: barotropic fluids as dark energy. Phys. Rev. D80, 023008 (2009). arXiv:0811.2797 ADSGoogle Scholar
  53. 53.
    Novosyadlyj, B., Sergijenko, O., Apunevych, S., Pelykh, V.: Properties and uncertainties of scalar field models of dark energy with barotropic equation of state. Phys. Rev. D82, 103008 (2010). arXiv:1008.1943 ADSGoogle Scholar
  54. 54.
    Novosyadlyj, B., Sergijenko, O., Durrer, R., Pelykhc, V.: Constraining the dynamical dark energy parameters: Planck 2013 vs WMAP9. J. Cosmol. Astropart. Phys. 05, 030 (2014). arXiv:1312.6579 CrossRefADSGoogle Scholar
  55. 55.
    Sergijenko, O., Novosyadlyj, B.: Perturbed dark energy: classical scalar field versus tachyon. Phys. Rev. D 80, 083007 (2009). arXiv:0904.1583 ADSGoogle Scholar
  56. 56.
    Xu, L., Wang, Y., Noh, Hyerim: Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys. Rev. D 85, 043003 (2012). arXiv:1112.3701 ADSGoogle Scholar
  57. 57.
    Wheeler, T.D., Stroock, A.D.: The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208 (2008)CrossRefADSGoogle Scholar
  58. 58.
    Caupin, F., Arvengas, A., Davitt, K., Azouzi, M.E.M., Shmulovich, K.I., Ramboz, C., Sessoms, D.A., Stroock, A.D.: Exploring water and other liquids at negative pressure. J. Phys. Condens. Matter 24, 284110 (2012)CrossRefGoogle Scholar
  59. 59.
    Stanley, H., Barbosa, M., Mossa, S., Netz, P., Sciortino, F., Starr, F., Yamada, M.: Statistical physics and liquid water at negative pressures. Phys. A Stat. Mech. Appl. 315, 281 (2002)CrossRefGoogle Scholar
  60. 60.
    Quevedo, H.: Geometrothermodynamics. J. Math. Phys. 48, 013506 (2007). physics/0604164 CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Vazquez, A., Quevedo, H., Sanchez, A.: Thermodynamic systems as extremal hypersurfaces. J. Geom. Phys. 60, 1942–1949 (2010). arXiv:1101.3359 CrossRefADSzbMATHMathSciNetGoogle Scholar
  62. 62.
    Krasinski, A., Quevedo, H., Sussman, R.: On the thermodynamical interpretation of perfect fluid solutions of the Einstein equations with no symmetry. J. Math. Phys. 38, 2602–2610 (1997)CrossRefADSzbMATHMathSciNetGoogle Scholar
  63. 63.
    Hernandez, F.J., Quevedo, H.: Entropy and anisotropy. Gen. Relativ. Gravit. 39, 1297–1309 (2007). gr-qc/0701125 CrossRefADSzbMATHMathSciNetGoogle Scholar
  64. 64.
    Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)CrossRefADSGoogle Scholar
  65. 65.
    Maartens, R.: Causal thermodynamics in relativity. astro-ph/9609119
  66. 66.
    Misner, C., Thorne, K., Wheeler, J.: Gravitation. W.H. Freeman and Company, London (1973)Google Scholar
  67. 67.
    Israel, W., Stewart, J.: Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 58(4), 213–215 (1976)CrossRefADSGoogle Scholar
  68. 68.
    Astashenok, A.V., Odintsov, S.D.: Confronting dark energy models mimicking \(\Lambda \)CDM epoch with observational constraints: future cosmological perturbations decay or future Rip? Phys. Lett. B718, 1194–1202 (2013). arXiv:1211.1888 CrossRefADSGoogle Scholar
  69. 69.
    Pavon, D., Zimdahl, W.: A thermodynamic characterization of future singularities? Phys. Lett. B708, 217–220 (2012). arXiv:1201.6144 CrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: The little rip. Phys. Rev. D84, 063003 (2011). arXiv:1106.4996 ADSGoogle Scholar
  71. 71.
    Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.: Viscous little rip cosmology. Phys. Rev. D84, 103508 (2011). arXiv:1107.4642 ADSGoogle Scholar
  72. 72.
    Frampton, P.H., Ludwick, K.J., Nojiri, S., Odintsov, S.D., Scherrer, R.J.: Models for little rip dark energy. Phys. Lett. B708, 204–211 (2012). arXiv:1108.0067 CrossRefADSGoogle Scholar
  73. 73.
    Astashenok, A.V., Nojiri, S., Odintsov, S.D., Yurov, A.V.: Phantom cosmology without big rip singularity. Phys. Lett. B709, 396–403 (2012). arXiv:1201.4056 CrossRefADSGoogle Scholar
  74. 74.
    Maartens, R.: Dissipative cosmology. Class. Quant. Gravit. 12, 1455–1465 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alejandro Aviles
    • 1
  • Norman Cruz
    • 2
  • Jaime Klapp
    • 1
    • 3
  • Orlando Luongo
    • 4
    • 5
    • 6
  1. 1.Departamento de MatemáticasCinvestav del Instituto Politécnico Nacional (IPN)MexicoMexico
  2. 2.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  3. 3.Departamento de FísicaInstituto Nacional de Investigaciones NuclearesMexicoMexico
  4. 4.Dipartimento di FisicaUniversità di Napoli “Federico II”NapoliItaly
  5. 5.Istituto Nazionale di Fisica Nucleare (INFN), Sezione di NapoliNapoliItaly
  6. 6.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de México (UNAM)MexicoMexico

Personalised recommendations