Advertisement

On the effective metric of a Planck star

  • Tommaso De Lorenzo
  • Costantino Pacilio
  • Carlo Rovelli
  • Simone SpezialeEmail author
Editor's Choice (Research Article)

Abstract

Spacetime metrics describing ‘non-singular’ black holes are commonly studied in the literature as effective modification to the Schwarzschild solution that mimic quantum gravity effects removing the central singularity. Here we point out that to be physically plausible, such metrics should also incorporate the 1-loop quantum corrections to the Newton potential and a non-trivial time delay between an observer at infinity and an observer in the regular center. We present a modification of the well-known Hayward metric that features these two properties. We discuss bounds on the maximal time delay imposed by conditions on the curvature, and the consequences for the weak energy condition, in general violated by the large transversal pressures introduced by the time delay.

Keywords

Quantum gravity Black hole physics Spacetime singularities Apparent horizons 

Notes

Acknowledgments

We kindly acknowledge support from the A*MIDEX project ANR-11-IDEX-0001-02, as well as the Samy Maroun Center For Space, Time and the Quantum.

References

  1. 1.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)Google Scholar
  2. 2.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, vol. 1, 20th edn. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). gr-qc/0602086
  4. 4.
    Rovelli, C., Vidotto, F.: Planck Stars. (2014). arXiv:1401.6562
  5. 5.
    Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Proceedings of International Conference GR5, Tbilisi, p. 174 (1968)Google Scholar
  6. 6.
    Frolov, V.P., Vilkovisky, G.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307–313 (1981)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Roman, T.A., Bergmann, P.G.: Stellar collapse without singularities? Phys. Rev. D 28, 1265–1277 (1983)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Mazur, P. O., and Mottola, E.: Gravitational condensate stars: An alternative to black holes, gr-qc/0109035
  9. 9.
    Dymnikova, I.: Cosmological term as a source of mass. Class. Quantum Gravity 19, 725–740 (2002). gr-qc/0112052
  10. 10.
    Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 31103 (2006). gr-qc/0506126
  11. 11.
    Nicolini, P., Smailagic, A., Spallucci, E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006). gr-qc/0510112
  12. 12.
    Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260
  13. 13.
    Modesto, L., Moffat, J.W., Nicolini, P.: Black holes in an ultraviolet complete quantum gravity. Phys. Lett. B 695, 397 (2011). arXiv:1010.0680
  14. 14.
    Frolov, V.P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. (2014). arXiv:1402.5446
  15. 15.
    Haggard, H.M., Rovelli, C.: Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. arXiv:1407.0989
  16. 16.
    Mersini-Houghton, L.: Backreaction of hawking radiation on a gravitationally collapsing star I: Black holes? PLB30496 Phys. Lett. B (2014). arXiv:1406.1525
  17. 17.
    Frolov, V.P.: Do Black Holes Exist? arXiv:1411.6981
  18. 18.
    Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. (2008). arXiv:0802.0330
  19. 19.
    Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003). hep-th/0211072
  20. 20.
    Dymnikova, I.: Vacuum nonsingular black hole. Gen. Relativ. Gravit 24, 235–242 (1992)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Borde, A.: Regular black holes and topology change. Phys. Rev. D 55, 7615–7617 (1997). gr-qc/9612057
  22. 22.
    Frolov, V.P., Markov, M., Mukhanov, V.F.: Through a black hole into a new universe? Phys. Lett. B 216, 272–276 (1989)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  24. 24.
    Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349–3362 (2005). gr-qc/0504029
  25. 25.
    Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. arXiv:1409.0144
  26. 26.
    Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. arXiv:1410.7062
  27. 27.
    Barrau, A., Rovelli, C.: Planck star phenomenology. (2014). arXiv:1404.5821
  28. 28.
    Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. arXiv:1409.4031
  29. 29.
    Donoghue, J.F.: The effective field theory treatment of quantum gravity. In: Proceedings of AIP Conference 1483, 73–94 (2012). arXiv:1209.3511

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tommaso De Lorenzo
    • 1
    • 3
    • 4
  • Costantino Pacilio
    • 2
    • 3
    • 4
  • Carlo Rovelli
    • 3
    • 4
  • Simone Speziale
    • 3
    • 4
    Email author
  1. 1.Dipartimento di FisicaUniversità di PisaPisaItaly
  2. 2.SISSATriesteItaly
  3. 3.CNRS, CPT, UMR 7332Aix Marseille UniversitéMarseilleFrance
  4. 4.CNRS, CPT, UMR 7332Université de ToulonLa GardeFrance

Personalised recommendations