Advertisement

How to include fermions into general relativity by exotic smoothness

  • Torsten Asselmeyer-Maluga
  • Carl H. Brans
Research Article

Abstract

The purpose of this paper is two-fold. At first we will discuss the generation of source terms in the Einstein–Hilbert action by using (topologically complicated) compact 3-manifolds. There is a large class of compact 3-manifolds with boundary such as a torus given as the complement of a (thickened) knot admitting a hyperbolic geometry, denoted as hyperbolic knot complements in the following. We will discuss the fermionic properties of this class of 3-manifolds, i.e. we are able to identify a fermion with a hyperbolic knot complement. Secondly we will construct a large class of space-times, the exotic \({\mathbb {R}}^{4}\), containing this class of 3-manifolds naturally. We begin with a topological trivial space, the \({\mathbb {R}}^{4}\), and change only the differential structure to obtain many nontrivial 3-manifolds. It is known for a long time that exotic \({\mathbb {R}}^{4}\)’s generate extra sources of gravity (Brans conjecture) but here we will analyze the structure of these source terms more carefully. Finally we will state that adding a hyperbolic knot complement will result in the appearance of a fermion as source term in the Einstein–Hilbert action.

Keywords

Source terms Einstein–Hilbert action Fermions as knot complements Exotic \({\mathbb {R}}^{4}\) Adding matter by adding 3-manifolds 

Notes

Acknowledgments

This work was partly supported (T.A.) by the LASPACE grant. The authors acknowledged for all mathematical discussions with Duane Randall, Robert Gompf and Terry Lawson. Furthermore we thank the two anonymous referees for pointing out some errors and limitations in a previous version as well for all helpful remarks to increase the readability of the paper.

References

  1. 1.
    Ashtekar, A., Engle, J., Sloan, D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quantum Gravity 25, 095020 (2008). arXiv:0802.2527 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Asselmeyer-Maluga, T.: Exotic smoothness and quantum gravity. Class. Quantum Gravity 27, 165002 (2010). arXiv:1003.5506 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Asselmeyer-Maluga, T., Brans, C.H.: Cosmological anomalies and exotic smoothness structures. Gen. Relat. Gravit. 34, 1767–1771 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Asselmeyer-Maluga, T., Brans, C.H.: Exotic Smoothness and Physics. World Scientific Publishing, Singapore (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Asselmeyer-Maluga, T., Król, J.: Exotic smooth \(\mathbb{R}^4\), noncommutative algebras and quantization (2010). arXiv: 1001.0882
  6. 6.
    Asselmeyer-Maluga, T., Król, J.: Small exotic smooth \(R^4\) and string theory. In: Bathia, R. (ed.) International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, p. 400. Hindustan Book Agency, New Delhi (2010)Google Scholar
  7. 7.
    Asselmeyer-Maluga, T., Król, J.: Constructing a quantum field theory from spacetime (2011). arXiv:1107.3458
  8. 8.
    Asselmeyer-Maluga, T., Król, J.: Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26, 3421–3437 (2011). arXiv:1105.1557 CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Asselmeyer-Maluga, T., Król, J.: Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods Modern Phys. 10(10), 1350055 (2013). doi: 10.1142/S0219887813500552arXiv:1211.3012
  10. 10.
    Asselmeyer-Maluga, T., Król, J.: Abelian gerbes, generalized geometries and foliations of small exotic \(R^4\). Rev. Math. Phys., (2014). arXiv: 0904.1276v5 (submitted)
  11. 11.
    Asselmeyer-Maluga, T., Król, J.: Inflation and topological phase transition driven by exotic smoothness. Adv. HEP, Article ID 867460:14 pages (2014). doi: 10.1155/2014/867460
  12. 12.
    Asselmeyer-Maluga, T., Mader, R.: Exotic \(R^4\) and quantum field theory. In: Burdik, C. (ed.) 7th International Conference on Quantum Theory and Symmetries (QTS7), p. 012011. IOP Publishing, Bristol (2012). doi: 10.1088/1742-6596/343/1/012011. arXiv:1112.4885 Google Scholar
  13. 13.
    Asselmeyer-Maluga, T., Rosé, H.: On the geometrization of matter by exotic smoothness. Gen. Relat. Gravit. 44, 2825–2856 (2012). doi: 10.1007/s10714-012-1419-3. arXiv:1006.2230 CrossRefADSzbMATHGoogle Scholar
  14. 14.
    Ashtekar, A., Sloan, D.: Action and Hamiltonians in higher dimensional general relativity: first order framework. Class. Quantum Gravity 25, 225025 (2008). arXiv:0808.2069 CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Asselmeyer, T.: Generation of source terms in general relativity by differential structures. Class. Quantum Gravity 14, 749–758 (1996)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Biz̆aca, Z̆., Gompf, R.: Elliptic surfaces and some simple exotic \({\mathbb{R}}^4\)’s. J. Differ. Geom. 43, 458–504 (1996)MathSciNetGoogle Scholar
  17. 17.
    Brans, C.H., Randall, D.: Exotic differentiable structures and general relativity. Gen. Relat. Gravit. 25, 205 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    Brans, C.H.: Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    Brans, C.H.: Localized exotic smoothness. Class. Quantum Gravity 11, 1785–1792 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Brans, C.: Absolulte spacetime: the twentieth century ether. Gen. Relat. Gravit. 31, 597 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar
  21. 21.
    Budney, R.: JSJ-decompositions of knot and link complements in the 3-sphere. L’enseignement Mathématique 52, 319–359 (2006). arXiv:math/0506523 zbMATHMathSciNetGoogle Scholar
  22. 22.
    Chernov, V., Nemirovski, S.: Smooth cosmic censorship Comm. Math. Phys. 320, 469–473 (2013). arXiv:1201.6070
  23. 23.
    Dabrowski, L., Dossena, G.: Dirac operator on spinors and diffeomorphisms. Class. Quantum Gravity 30, 015006 (2013). arXiv:1209.2021 CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    DeMichelis, S., Freedman, M.H.: Uncountable many exotic \({R}^4\)’s in standard 4-space. J. Differ. Geom. 35, 219–254 (1992)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Denicola, D., Marcolli, M., al Yasry, A.Z.: Spin foams and noncommutative geometry. Class. Quantum Gravity 27, 205025 (2010). arXiv:1005.1057 CrossRefADSGoogle Scholar
  26. 26.
    Donaldson, S.: An application of gauge theory to the topology of 4-manifolds. J. Differ. Geom. 18, 269–316 (1983)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Donaldson, S.: Irrationality and the h-cobordism conjecture. J. Differ. Geom. 26, 141–168 (1987)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Duston, C.: Exotic smoothness in 4 dimensions and semiclassical Euclidean quantum gravity. Int. J. Geom. Methods Mod. Phys. 8, 459–484 (2010). arXiv:0911.4068 CrossRefMathSciNetGoogle Scholar
  29. 29.
    Duston, ChL: Topspin networks in loop quantum gravity. Class. Quantum Gravity 29, 205015 (2012). arXiv:1111.1252 CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Duston, Ch.L.: The fundamental group of a spatial section represented by a topspin network. Based on work presented at the LOOPS 13 conference at the Perimeter Institute (2013). arXiv:1308.2934
  31. 31.
    Freedman, M., Quinn, F.: Topology of 4-Manifolds. Princeton Mathematical Series. Princeton University Press, Princeton (1990)Google Scholar
  32. 32.
    Freedman, M.H.: A surgery sequence in dimension four; the relation with knot concordance. Invent. Math. 68, 195–226 (1982)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–454 (1982)zbMATHGoogle Scholar
  34. 34.
    Friedrich, T.: On the spinor representation of surfaces in euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998). arXiv: dg-ga/9712021v1 CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    Friedman, J.L., Sorkin, R.D.: Spin \(\frac{1}{2}\) from gravity. Phys. Rev. Lett. 44, 1100–1103 (1980)CrossRefADSGoogle Scholar
  36. 36.
    Fintushel, R., Stern, R.: Knots, links, and 4-manifolds. Invent. Math 134, 363–400 (1998). ( dg-ga/9612014)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    Ganzell, S.: Ends of 4-manifolds. Top. Proc. 30:223–236 (2006). available also at http://faculty.smcm.edu/sganzell/ends
  38. 38.
    Golubitsky, M., Guillemin, V.: Stable Mappings and their Singularities. Graduate Texts in Mathematics 14. Springer Verlag, New York-Heidelberg-Berlin (1973)CrossRefzbMATHGoogle Scholar
  39. 39.
    Gompf, R.E.: Three exotic \(R^4\)’s and other anomalies. J. Differ. Geom. 18, 317–328 (1983)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Gompf, R.: An infinite set of exotic \({\mathbb{R}}^4\)’s. J. Differ. Geom. 21, 283–300 (1985)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. American Mathematical Society, Providence (1999)CrossRefzbMATHGoogle Scholar
  42. 42.
    Hendriks, H.: Applications de la theore d’ obstruction en dimension 3. Bull. Soc. Math. Fr. Mem. 53, 81–196 (1977)zbMATHMathSciNetGoogle Scholar
  43. 43.
    W. Jaco and P. Shalen. Seifert fibered spaces in 3-manifolds. Memoirs of American Mathematical Society, vol. 21, AMS (1979)Google Scholar
  44. 44.
    Kuhlmann, M.: Quantum field theory. In Standford Encyclopedia of Philosophy. available online: http://plato.stanford.edu/entries/quantum-field-theory/ (2012)
  45. 45.
    LeBrun, C.: Four-manifolds without einstein metrics. Math. Res. Lett. 3, 133–147 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Milnor, J.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Mostow, G.D.: Quasi-conformal mappings in \(n\)-space and the rigidity of hyperbolic space forms. Publ. Math. IHS 34, 53–104 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Rolfson, D.: Knots and Links. Publish or Prish, Berkeley (1976)Google Scholar
  49. 49.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)CrossRefzbMATHGoogle Scholar
  50. 50.
    Scorpan, A.: The Wild Worlds of 4-Manifolds. AMS, Providence, Rhode Island. See also www.ams.org/bookpages/fourman (2005)
  51. 51.
    Sładkowski, J.: Strongly gravitating empty spaces (1999). Preprint gr-qc/9906037
  52. 52.
    Sładkowski, J.: Gravity on exotic \({\mathbb{R}}^{4}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)CrossRefADSzbMATHGoogle Scholar
  53. 53.
    Steenrod, N.: Topology of Fibre Bundles. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  54. 54.
    Taylor, L.R.: Impossible metric conditions on exotic \({{R}}^4\)’s (2005). arXiv:math/0510450

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)BerlinGermany
  2. 2.Loyola UniversityNew OrleansUSA

Personalised recommendations