A simple characterization of generalized Robertson–Walker spacetimes

  • Bang-Yen ChenEmail author
Research Article


A generalized Robertson–Walker spacetime is the warped product with base an open interval of the real line endowed with the opposite of its metric and base any Riemannian manifold. The family of generalized Robertson–Walker spacetimes widely extends the one of classical Robertson–Walker spacetimes. Further, generalized Robertson–Walker spacetimes appear as a privileged class of inhomogeneous spacetimes admitting an isotropic radiation.

In this section we prove a very simple characterization of generalized Robertson–Walker spacetimes; namely, a Lorentzian manifold is a generalized Robertson–Walker spacetime if and only if it admits a timelike concircular vector field.


Generalized Robertson–Walker spacetime Robertson–Walker spacetime Timelike concircular vector field  Lorentzian warped product 

Mathematics Subject Classification

Primary 83F05 Secondary 53C25 



The author thanks the referees for their useful suggestions for improving the presentation of this paper.


  1. 1.
    Aledo, J.A., Romero, A., Rubio, R.M.: Upper and lower bounds for the volume of a compact spacelike hypersurface in a generalized Robertson–Walker spacetime. Int. J. Geom. Methods Mod. Phys. 11(1), 1450006 (2014)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 27(1), 71–84 (1995)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Alías, L.J., Colares, A.G., de Lima, H.F.: On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson–Walker spacetime. Bull. Braz. Math. Soc. (N.S.) 44(2), 195217 (2013)Google Scholar
  4. 4.
    Caballero, M., Romero, A., Rubio, R.M.: Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field. Class. Quantum Gravity 28(14), 145009 (2011)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, B.-Y.: Pseudo-Riemannian Geometry, \(\delta \)-Invariants and Applications. World Scientific, Hackensack, NJ (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, B.-Y.: Total Mean Curvature and Submanifolds of Finite Type, 2nd edn. World Scientific, Hackensack, NJ (2014)CrossRefGoogle Scholar
  7. 7.
    Deszcz, R., Kucharski, M.: On curvature properties of certain generalized Robertson–Walker spacetimes. Tsukuba J. Math. 23(1), 113–130 (1999)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Fialkow, A.: Conformals geodesics. Trans. Am. Math. Soc. 45(3), 443–473 (1939)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hiepko, S.: Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. 241(3), 209–215 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)zbMATHGoogle Scholar
  11. 11.
    Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry. Geom. Dedic. 48, 15–25 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Romero, A., Rubio, R.M., Salamanca, J.J.: Parabolicity of spacelike hypersurfaces in generalized Robertson–Walker spacetimes. Applications to uniqueness results. Int. J. Geom. Methods Mod. Phys. 10(8), 1360014 (2013)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Romero, A., Rubio, R.M., Salamanca, J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson–Walker spacetimes. Class. Quantum Gravity 30(11), 115007 (2013)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sánchez, M.: On the geometry of generalized Robertson–Walker spacetimes: geodesics. Gen. Relativ. Gravit. 30(6), 915–932 (1998)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Sánchez, M.: On the geometry of generalized Robertson–Walker spacetimes: curvature and Killing fields. J. Geom. Phys. 31(1), 1–15 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Takeno, H.: Concircular scalar field in spherically symmetric space-times, I. Tensor (N.S.) 20(2), 167–176 (1967)Google Scholar
  17. 17.
    Yano, K.: Concircular geometry. I. Concircular transformations. Proc. Imp. Acad. Tokyo 16, 195–200 (1940)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations