Hamiltonian and Noether charges in first order gravity

  • Alejandro CorichiEmail author
  • Iraís Rubalcava-García
  • Tatjana Vukašinac
Editor's Choice (Research Article)


We consider gravity in four dimensions in the vielbein formulation, where the fundamental variables are a tetrad \(e\) and a SO(3,1) connection \(\omega \). We start with the most general action principle compatible with diffeomorphism invariance which includes, besides the standard Palatini term, other terms that either do not change the equations of motion, or are topological in nature. For our analysis we employ the covariant Hamiltonian formalism where the phase space \(\Gamma \) is given by solutions to the equations of motion. We consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. For this extended action we study the effect of the topological terms on the Hamiltonian formulation. We prove two results. The first one is rather generic, applicable to any field theory with boundaries: The addition of topological terms (and any other boundary term) does not modify the symplectic structure of the theory. The second result pertains to the conserved Hamiltonian and Noether charges, whose properties we analyze in detail, including their relationship. While the Hamiltonian charges are unaffected by the addition of topological and boundary terms, we show in detail that the Noether charges do change. Thus, a non-trivial relation between these two sets of charges arises when the boundary and topological terms needed for a consistent formulation are included.


Action principle Hamiltonian formulation Boundary terms Asymptotically flat configurations Conserved charges 



We would like to thank N. Bodendorfer, S. Deser, T. Jacobson and R. Olea for comments. We would also like to thank an anonymous referee for comments that helped to improve the manuscript. This work was in part supported by CONACyT 0177840, DGAPA-UNAM IN100212, and NSF PHY 1205388 Grants, the Eberly Research Funds of Penn State and by CIC, UMSNH.


  1. 1.
    Romano, J.D.: Geometrodynamics versus connection dynamics (in the context of (\(2+1\)) and (\(3+1\)) gravity. Gen. Relativ. Gravit. 25, 759 (1993). [ gr-qc/9303032]
  2. 2.
    Peldan, P.: Actions for gravity, with generalizations: a review. Class. Quantum Grav. 11, 1087 (1994). [ gr-qc/9305011]
  3. 3.
    Palatini, A.: Deduzione invariativa delle equazioni gravitazionali dal principio di Hamilton. Rend. Circ. Mat. Palermo 43, 203 (1919)CrossRefzbMATHGoogle Scholar
  4. 4.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997 (2008). [ gr-qc/0405109]
  5. 5.
    Utiyama, R.: Invariant theoretical interpretation of interaction. Phys. Rev. 101, 1597 (1956)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Sciama, D.W.: The Physical structure of general relativity. Rev. Mod. Phys. 36, 463 (1964). [Erratum-ibid. 36, 1103 (1964)]Google Scholar
  8. 8.
    Deser, S., Isham, C.J.: Canonical vierbein form of general relativity. Phys. Rev. D 14, 2505 (1976)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966 (1996). [ gr-qc/9511026]
  10. 10.
    Barros e Sa, N.: Hamiltonian analysis of general relativity with the Immirzi parameter. Int. J. Mod. Phys. D 10, 261 (2001). [ gr-qc/0006013]
  11. 11.
    Deser, S., Duff, M.J., Isham, C.J.: Gravitationally induced CP effects. Phys. Lett. B 93, 419 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Ashtekar, A., Balachandran, A.P., Jo, S.: The CP problem in quantum gravity. Int. J. Mod. Phys. A 4, 1493 (1989)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Montesinos, M.: Selfdual gravity with topological terms. Class. Quantum Grav. 18, 1847 (2001). [ gr-qc/0104068]
  14. 14.
    Ashtekar, A., Engle, J., Sloan, D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quantum Grav. 25, 095020 (2008). [ arXiv:0802.2527 [gr-qc]]
  15. 15.
    Ashtekar, A., Fairhurst, S., Krishnan, B.: Isolated horizons: Hamiltonian evolution and the first law. Phys. Rev. D 62, 104025 (2000). [ gr-qc/0005083]
  16. 16.
    Ashtekar, A., Pawlowski, T., Van Den Broeck, C.: Mechanics of higher-dimensional black holes in asymptotically anti-de Sitter space–times. Class. Quantum Grav. 24, 625 (2007). [ gr-qc/0611049]
  17. 17.
    Corichi, A., Wilson-Ewing, E.: Surface terms, asymptotics and thermodynamics of the Holst action. Class. Quantum Grav. 27, 205015 (2010). [ arXiv:1005.3298 [gr-qc]]
  18. 18.
    Ashtekar, A., Bombeli, L., Reula, O.: The covariant phase space of asymptotically flat gravitational fields. In: Francaviglia, M., Holm, D. (eds.) Analysis, geometry and mechanics: 200 years after Lagrange. North-Holland, Amsterdam (1991)Google Scholar
  19. 19.
    Crnkovic, C., Witten, E.: Covariant description of canonical formalism in geometrical theories. In: Hawking, S.W., Israel, W. (eds.) Three hundred years of gravitation. Cambridge University Press, Cambridge (1987)Google Scholar
  20. 20.
    Lee, J., Wald, R.M.: Local symmetries and constraints. J. Math. Phys. 31, 725 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Wald, R.M., Zoupas, A.: A General definition of ’conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000). [ gr-qc/9911095]
  22. 22.
    Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846 (1994). [ gr-qc/9403028]
  23. 23.
    Barbero, J.F.G., Prieto, J., Villaseor, E.J.S.: Hamiltonian treatment of linear field theories in the presence of boundaries: a geometric approach. Class. Quantum Grav. 31, 045021 (2014). [ arXiv:1306.5854 [math-ph]]
  24. 24.
    Corichi, A., Rubalcava, I., Vukašinac, T.: First order gravity: actions, topological terms and boundaries (2013). [ arXiv:1312.7828 [gr-qc]]
  25. 25.
    Obukhov, Y.N.: The Palatini principle for manifold with boundary. Class. Quantum Grav. 4, 1085 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Bodendorfer, N., Neiman, Y.: Imaginary action, spinfoam asymptotics and the ’transplanckian’ regime of loop quantum gravity. Class. Quantum Grav. 30, 195018 (2013). [ arXiv:1303.4752 [gr-qc]]
  27. 27.
    Barbero, J.F.G.: Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507 (1995). [ gr-qc/9410014]
  28. 28.
    Nieh, H.T., Yan, M.L.: An identity in Riemann–Cartan geometry. J. Math. Phys. 23, 373 (1982)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Nieh, H.T.: A torsional topological invariant. Int. J. Mod. Phys. A 22, 5237 (2007). [ arXiv:1309.0915 [gr-qc]]
  30. 30.
    Wald, R.M.: General relativity. University of Chicago Press, Chicago (1994)Google Scholar
  31. 31.
    Chandrasekhar, S.: The mathematical theory of black holes. Clanderon Press, Oxford (1992)Google Scholar
  32. 32.
    Chatterjee, A., Ghosh, A.: Laws of black hole mechanics from Holst action. Phys. Rev. D 80, 064036 (2009). [ arXiv:0812.2121 [gr-qc]]
  33. 33.
    Liko, T., Booth, I.: Isolated horizons in higher-dimensional Einstein–Gauss–Bonnet gravity. Class. Quantum Grav. 24, 3769 (2007). [ arXiv:0705.1371 [gr-qc]]
  34. 34.
    Liu, L., Montesinos, M., Perez, A.: A topological limit of gravity admitting an SU(2) connection formulation. Phys. Rev. D 81, 064033 (2010). [ arXiv:0906.4524 [gr-qc]]
  35. 35.
    Liko, T.: Topological deformation of isolated horizons. Phys. Rev. D 77, 064004 (2008). [ arXiv:0705.1518 [gr-qc]]
  36. 36.
    Mondragon, M., Montesinos, M.: Covariant canonical formalism for four-dimensional BF theory. J. Math. Phys. 47, 022301 (2006). [ gr-qc/0402041]
  37. 37.
    Rezende, D.J., Perez, A.: The Theta parameter in loop quantum gravity: effects on quantum geometry and black hole entropy. Phys. Rev. D 78, 084025 (2008). [ arXiv:0711.3107 [gr-qc]]
  38. 38.
    Ashtekar, A., Beetle, C., Lewandowski, J.: Mechanics of rotating isolated horizons. Phys. Rev. D 64, 044016 (2001). [ gr-qc/0103026]
  39. 39.
    Pons, J.M.: Boundary conditions from boundary terms, Noether charges and the trace K lagrangian in general relativity. Gen. Relativ. Gravit. 35, 147 (2003). [ gr-qc/0105032]
  40. 40.
    Jacobson, T., Myers, R.C.: Black hole entropy and higher curvature interactions. Phys. Rev. Lett. 70, 3684 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Aros, R., Contreras, M., Olea, R., Troncoso, R., Zanelli, J.: Conserved charges for gravity with locally AdS asymptotics. Phys. Rev. Lett. 84, 1647 (2000). [ gr-qc/9909015]
  42. 42.
    Aros, R.: Boundary conditions in first order gravity: Hamiltonian and Ensemble. Phys. Rev. D 73, 024004 (2006). [ gr-qc/0507091]

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alejandro Corichi
    • 1
    • 2
    Email author
  • Iraís Rubalcava-García
    • 1
    • 3
  • Tatjana Vukašinac
    • 4
  1. 1.Centro de Ciencias MatemáticasUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Center for Fundamental Theory, Institute for Gravitation and the CosmosPennsylvania State UniversityUniversity ParkUSA
  3. 3.Instituto de Física y MatemáticasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  4. 4.Facultad de Ingeniería CivilUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations