On the accuracy of the IWM–CFC approximation in differentially rotating relativistic stars

Research Article
  • 73 Downloads

Abstract

We determine the accuracy of the conformal flatness (IWM–CFC) approximation for the case of single, but strongly differentially rotating relativistic stars. We find that for the fastest rotating and most relativistic polytropic models, the deviation from full general relativity is below 5 % for integrated quantities and below 10 % for local quantities, such as the angular velocity. Furthermore, we study the deviation of the IWM–CFC approximation from full general relativity by evaluating and comparing different error indicators. We find that for the models that are not near the maximum mass, a simple error indicator constructed from local values of the metric potentials is more indicative of the accuracy of the IWM–CFC approximation than an error indicator that is based on the Cotton–York tensor. Furthermore, we construct a simple, linear empirical relation that allows for the estimation of the error made by the IWM–CFC approximation and which only involves the flattening of the star due to rotation and the minimum value of the lapse function. Thus, in any numerical simulation involving rotating relativistic stars, one can readily know the deviations from full general relativity due to the IWM–CFC approximation.

Keywords

Neutron stars Differential rotation Conformal flatness Numerical relativity 

References

  1. 1.
    Baumgarte, T.W., Shapiro, S.L., Shibata, M.: Astrophys. J. 528, L29 (2000)CrossRefADSGoogle Scholar
  2. 2.
    Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., Kiuchi, K.: Phys. Rev. D 83, 124008 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Bauswein, A., Janka, H.T.: Phys. Rev. Lett. 108, 011101 (2012)CrossRefADSGoogle Scholar
  4. 4.
    Stergioulas, N., Bauswein, A., Zagkouris, K., Janka, H.T.: Mon. Not. R. Astron. Soc. 418, 427 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Isenberg, J.A.: Mod. Int. J Phys. D. 17, 265 (2008)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Wilson, J.R., Mathews, G.J., Marronetti, P.: Phys. Rev. D 54, 1317 (1996)CrossRefADSGoogle Scholar
  7. 7.
    Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. D 53, 5533 (1996)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Dimmelmeier, H., Font, J.A., Müller, E.: Astron. Astrophys. 388, 917 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Dimmelmeier, H., Font, J.A., Müller, E.: Astron. Astrophys. 393, 523 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Saijo, M.: Astrophys J. 615, 866 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.T., Hawke, I., Zink, B., Schnetter, E.: Class. Quantum Grav. 24(12), S139 (2007)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Shibata, M., Sekiguchi, Y.: Phys. Rev. D 69, 084024 (2004)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Dimmelmeier, H., Stergioulas, N., Font, J.A.: Mon. Not. R. Astron. Soc. 368, 1609 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Cerdá-Durán, P., Font, J.A., Antón, L., Müller, E.: Astron. Astrophys. 492, 937 (2008)CrossRefMATHADSGoogle Scholar
  15. 15.
    Abdikamalov, E.B., Dimmelmeier, H., Rezzolla, L., Miller, J.C.: Mon. Not. R. Astron. Soc. 392, 52 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Miller, M., Gressman, P., Suen, W.: Phys. Rev. D 69, 064026 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Oechslin, R., Janka, H.T.: Mon. Not. R. Astron. Soc. 368, 1489 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Oechslin, R., Janka, H.T., Marek, A.: Astron. Astrophys. 467, 395 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Bauswein, A., Stergioulas, N., Janka, H.-T.: Phys. Rev. D 90(2), 023002 (2014)Google Scholar
  20. 20.
    Kley, W., Schäfer, G.: Phys. Rev. D 60, 027501 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Phys. Rev. D 79(2), 024017 (2009)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Cerdá-Durán, P., Faye, G., Dimmelmeier, H., Font, J.A., Ibáñez, J.M., Müller, E., Schäfer, G.: Astron. Astrophys. 439(3), 1033 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Bucciantini, N., Del Zanna, L.: Astron. Astrophys. 528, A101 (2011)CrossRefADSGoogle Scholar
  24. 24.
    Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  25. 25.
    Komatsu, H., Eriguchi, Y., Hachisu, I.: Mon. Not. R. Astron. Soc. 237, 355 (1989)CrossRefMATHADSGoogle Scholar
  26. 26.
    Komatsu, H., Eriguchi, Y., Hachisu, I.: Mon. Not. R. Astron. Soc. 239, 153 (1989)CrossRefMATHADSGoogle Scholar
  27. 27.
    Stergioulas, N.: RNS. http://www.gravity.phys.uwm.edu/rns. Public domain code
  28. 28.
    Stergioulas, N., Friedman, J.L.: Astrophys. J. 444, 306 (1995)CrossRefADSGoogle Scholar
  29. 29.
    Nozawa, T., Stergioulas, N., Gourgoulhon, E., Eriguchi, Y.: Astron. Astrophys. Suppl. Ser. 132, 431 (1998)CrossRefADSGoogle Scholar
  30. 30.
    Stergioulas, N., Apostolatos, T.A., Font, J.A.: Mon. Not. R. Astron. Soc. 352, 1089 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Giacomazzo, B., Rezzolla, L., Stergioulas, N.: Phys. Rev. D 84(2), 024022 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Takami, K., Rezzolla, L., Yoshida, S.: Mon. Not. R. Astron. Soc. 416, L1 (2011)CrossRefADSGoogle Scholar
  33. 33.
    York, J.W.: Phys. Rev. Lett. 26, 1656 (1971)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Garciá, A.A., Hehl, F.W., Heinicke, C., Maciás, A.: Class. Quantum Grav. 21, 1099 (2004)CrossRefMATHADSGoogle Scholar
  35. 35.
    Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Astrophys J. 398, 203 (1992)CrossRefADSGoogle Scholar
  36. 36.
    Iosif, P., Stergioulas, N.: J. Phys. Conf. Ser. 453(1), 012004 (2013)CrossRefADSGoogle Scholar
  37. 37.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einsteins’s Equations on the Computer. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations