Advertisement

Symmetry analysis of radiative spacetimes with a null isotropy using GHP formalism

  • S. Brian Edgar
  • Michael Bradley
  • M. Piedade Machado Ramos
Research Article

Abstract

A complete and simple invariant classification of the conformally flat pure radiation metrics with a negative cosmological constant that were obtained by integration using the generalised invariant formalism is presented. We show equivalence between these metrics and the corresponding type O subclass of the more general spacetime studied by Siklos. The classification procedure indicates that the metrics possess a one degree of null isotropy freedom which has very interesting repercussions in the symmetry analysis. The Killing and homothetic vector analysis in GHP formalism is then generalised to this case were there is only one null direction defined geometrically. We determine the existing Killing vectors for the different subclasses that arise in the classification and compare these results to those obtained in the symmetry analysis performed by Siklos for a larger class of metrics with Ricci tensor representing a pure radiation field and a negative cosmological constant. It is also shown that there are no homothetic Killing vectors present.

Keywords

Generalised invariant formalism Pure radiation spacetimes  Karlhede classification Symmetries 

Notes

Acknowledgments

This research was partially supported by the Research Center of Mathematics of the University of Minho through the FEDER Funds Programa Operacional Factores de Competitividade COMPETE, and by the Portuguese Funds through FCT—Fundação para a Ciência e Tecnologia within the Project Est-C/MAT/UI0013/2011. MB wishes to thank the Center of Mathematics of the University of Minho, for supporting a visit to this university, and the Department of Mathematics and Applications for their hospitality.

References

  1. 1.
    Åman, J.: Manuel for CLASSI. University of Stockholm. Institute of Theoretical Physics Technical Report (1987)Google Scholar
  2. 2.
    Åman, J.E., Karlhede, A.: Phys. Lett. A 80, 229 (1980)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Barnes, A.: Class. Quantum Gravit. 18, 5287 (2001)CrossRefzbMATHADSGoogle Scholar
  4. 4.
    Bičák, J., Podolský, J.: J. Math. Phys. 4495 (1999)Google Scholar
  5. 5.
    Bičák, J., Podolský, J.: J. Math. Phys. 4506 (1999)Google Scholar
  6. 6.
    Bradley, M., Edgar, S.B., Machado Ramos, M.P.: Gen. Relativ. Gravit. 42, 155 (2010)Google Scholar
  7. 7.
    Cartan, E.: Leçons sur la geometrie des espaces de Riemann. Gauthier-Villars, Paris (1946)zbMATHGoogle Scholar
  8. 8.
    Collins, J., d’Inverno, R.A., Vickers, J.A.: Class. Quantum Gravit. 7, 2005 (1991)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Collins, J., d’Inverno, R.A., Vickers, J.A.: Class. Quantum Gravit. 8, L215 (1991)MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. 10.
    Collins, J., d’Inverno, R.A.: Class. Quantum Gravit. 10, 343 (1993)MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. 11.
    Defrise, L.: Groupes d’isotropie et groupes de stabilité conforme dans les espaces Lorentziens, Thesis. Unversité Libre de Bruxelles (1969)Google Scholar
  12. 12.
    Edgar, S.B.: Gen. Relativ. Gravit. 24, 1267 (1992)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    Edgar, S.B., Ludwig, G.: Gen. Relativ. Gravit. 29, 19 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. 14.
    Edgar, S.B., Ludwig, G.: Class. Quantum Gravit. 14, L65 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. 15.
    Edgar, S.B., Ludwig, G.: Gen. Relativ. Gravit. 29, 1309 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    Edgar, S.B., Ludwig, G.: Gen. Relativ. Gravit. 32, 637 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Edgar, S.B., Machado Ramos, M.P.: Gen. Relativ. Gravit. 39, 539 (2007)MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. 18.
    Edgar, S.B., Machado Ramos, M.P.: Gen. Relativ. Gravit. 39, 1749 (2007)MathSciNetCrossRefzbMATHADSGoogle Scholar
  19. 19.
    Edgar, S.B., Vickers, J.A.: Class. Quantum Gravit. 16, 589 (1999)MathSciNetCrossRefzbMATHADSGoogle Scholar
  20. 20.
    Geroch, R., Held, A., Penrose, R.: J. Math. Phys. 14, 874 (1973)MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. 21.
    Griffiths, J.B., Podolsky, J., Docherty, P.: Class. Quantum Gravit. 19, 4649 (2002)MathSciNetCrossRefzbMATHADSGoogle Scholar
  22. 22.
    Griffiths, J.B., Docherty, P., Podolsky, J.: Class. Quantum Gravit. 21, 207 (2004)MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. 23.
    Held, A.: Gen. Relativ. Gravit. 7, 177 (1976)MathSciNetCrossRefzbMATHADSGoogle Scholar
  24. 24.
    Held, A.: Gen. Relativ. Gravit. 31, 1473 (1999)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    Held, A.: J. Math. Phys. 17, 39 (1976)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Kaigorodov, V.R.: Sov. Phys.-Dokl. 7, 893 (1963)MathSciNetADSGoogle Scholar
  27. 27.
    Karlhede, A.: Gen. Relativ. Gravit. 12, 693 (1980)MathSciNetCrossRefzbMATHADSGoogle Scholar
  28. 28.
    Kundt, W.: Z. Phys. 163, 77 (1961)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Kundt, W.: Proc. R. Soc. A 270, 328 (1962)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Ludwig, G., Edgar, S.B.: Class. Quantum Gravit. 17, 1683 (2000)MathSciNetCrossRefzbMATHADSGoogle Scholar
  31. 31.
    Ludwig, G., Edgar, S.B.: Gen. Relativ. Gravit. 34, 807 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    MacCallum, M.A.H., Åman, J.E.: Class. Quantum Gravit. 3, 1133 (1986)CrossRefzbMATHADSGoogle Scholar
  33. 33.
    Machado Ramos, M.P.: Class. Quantum Gravit. 15, 435 (1998)MathSciNetCrossRefzbMATHADSGoogle Scholar
  34. 34.
    Machado Ramos, M.P., Vickers, J.A.G.: Proc. R. Soc. Lond. A 1940, 693 (1995)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Machado Ramos, M.P., Vickers, J.A.G.: Class. Quantum Gravit. 13, 1579 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
  36. 36.
    Machado Ramos, M.P., Vickers, J.A.G.: Class. Quantum Gravit. 13, 1589 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
  37. 37.
    Milson, R., Pelavas, N.: Class. Quantum Gravit. 25, 012001 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ozsváth, I., et al.: J. Math. Phys. 26, 1755 (1985)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    Podolský, J.: Class. Quantum Gravit. 15, 719 (1998)CrossRefzbMATHADSGoogle Scholar
  40. 40.
    Podolský, J., Prikryl, O.: Gen. Relat. Gravit. 41, 1069 (2009)CrossRefzbMATHADSGoogle Scholar
  41. 41.
    Pollney, D., Skea, J.E.F., d’Inverno, R.A.: Class. Quantum Gravit. 17, 2885 (2000)MathSciNetCrossRefzbMATHADSGoogle Scholar
  42. 42.
    Siklos, S.T.C.: In: MacCallum, M.A.H. (ed.) Galaxies, Axisymmetric Systems and Relativity, p. 247. Cambridge University Press, London (1985)Google Scholar
  43. 43.
    Skea, J.E.F.: Class. Quantum Gravit. 14, 2393 (1997)MathSciNetCrossRefzbMATHADSGoogle Scholar
  44. 44.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Equations. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Brian Edgar
    • 1
  • Michael Bradley
    • 2
  • M. Piedade Machado Ramos
    • 3
  1. 1.Department of MathematicsLinköpings UniversitetLinköpingSweden
  2. 2.Department of PhysicsUmeå UniversitetUmeåSweden
  3. 3.Departamento de Matemática e AplicaçõesUniversidade do MinhoGuimarãesPortugal

Personalised recommendations