Advertisement

Space-based detectors

  • A. Sesana
  • W. J. Weber
  • C. J. Killow
  • M. Perreur-Lloyd
  • D. I. Robertson
  • H. Ward
  • E. D. Fitzsimons
  • J. Bryant
  • A. M. Cruise
  • G. Dixon
  • D. Hoyland
  • D. Smith
  • J. Bogenstahl
  • P. W. McNamara
  • R. Gerndt
  • R. Flatscher
  • G. Hechenblaikner
  • M. Hewitson
  • O. Gerberding
  • S. Barke
  • N. Brause
  • I. Bykov
  • K. Danzmann
  • A. Enggaard
  • A. Gianolio
  • T. Vendt Hansen
  • G. Heinzel
  • A. Hornstrup
  • O. Jennrich
  • J. Kullmann
  • S. Møller-Pedersen
  • T. Rasmussen
  • J. Reiche
  • Z. Sodnik
  • M. Suess
  • M. Armano
  • T. Sumner
  • P. L. Bender
  • T. Akutsu
  • DECIGO working group
  • B. S. Sathyaprakash
Research Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10

Abstract

The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload “LISA Technology Package” will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

Keywords

LISA Pathfinder Optical bench Interferometer Spaceborne precision metrology Interferometry Phasemeter  Gravitational waves 

Notes

Acknowledgments

This research was supported by the Japan Aerospace Exploration Agency (JAXA), by the Japan Society for the Promotion of Science (JSPS), Grant-in-aid for scientific research, by the Global COE Program of the graduated school of science in Kyoto University, and by the Research Center for the Early Universe (RESCEU) at the University of Tokyo.

References

  1. 1.
    Amaro Seoane, P., et al.: The Gravitational Universe, arXiv:1305:5720 (2013)
  2. 2.
    Stroeer, A., Vecchio, A.: The LISA verification binaries. Class. Quantum Gravity 23, 809 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Nelemans, G., Yungelson, L.R.: The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A & A 375, 890 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Nissanke, S., Vallisneri, M., Nelemans, G., Prince, T.A.: Gravitational-wave emission from compact Galactic binaries. Astrophys. J. 758, 131 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Volonteri, M., Haardt, F., Madau, P.: The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 599 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Malbon, R.K., Baugh, C.M., Frenk, C.S., Lacey, C.G.: Black hole growth in hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 382, 1394 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Sesana, A., Gair, J., Berti, E., Volonteri, M.: Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83, 4036 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Barack, L., Cutler, C.: LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D. 69 (2004)Google Scholar
  9. 9.
    Volonteri, M.: The early evolution of massive black holes, arXiv:0912.0525 (2009)
  10. 10.
    Gair, J.R., Tang, C., Volonteri, M.: LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 81, 4014 (2010)CrossRefGoogle Scholar
  11. 11.
    Rummel, R., Yi, W., Stummer, C.: GOCE gravitational gradiometry. J. Geodesy 85, 777 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Antonucci, F., et al.: From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion. Class. Quantum Gravity 28, 094002 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Dolesi, R., et al.: Gravitational sensor for LISA and its technology demonstration mission. Class. Quantum Gravity 20, S99 (2003)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Weber, W.J., et al.: Position sensors for flight testing of LISA drag-free control. SPIE Proceedings 4856, 31 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Willemenot, E., Touboul, P.: On-ground investigation of space accelerometers noise with an electrostatic torsion pendulum. Rev. Sci. Instr. 71, 302 (2000)Google Scholar
  16. 16.
    Antonucci, F., et al.: Interaction between stray electrostatic fields and a charged free-falling test mass. Phys. Rev. Lett. 108, 181101 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Cavalleri, A., et al.: Increased brownian force noise from molecular impacts in a constrained volume. Phys. Rev. Lett. 103, 140601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Cavalleri, A., et al.: A new torsion pendulum for testing the limits of free-fall for LISA test masses. Class. Quantum Gravity 26, 094017 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Wiese, D.N., Folkner, W.M., Nerem, R.S.: Alternative mission architectures for a gravity recovery satellite mission. J. Geodesy 83, 569 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Ashby, N., et al.: Measurement of gravitational time delay using drag-free spacecraft and an optical clock. Proc. Int. Astr. Union Symp. 5, 414 (2009)CrossRefGoogle Scholar
  21. 21.
    Robertson, D.I., et al.: Construction and testing of the optical bench for LISA Pathfinder. Class. Quantum Gravity 30, 085006 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Killow, C.J., et al.: Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level. Appl. Opt. 52, 177–181 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Fitzsimons, E.D., et al.: Precision absolute positional measurement of laser beams. Appl. Opt. 52, 2527–2530 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Racca, G.D., McNamara, P.W.: The LISA pathfinder mission. Sp. Sci. Rev. 151, p159–181 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Amaro-Seone, P., et al.: eLISA: Astrophysics and cosmology in the millihertz regime. GW Notes 6, p4–110 (2013)Google Scholar
  26. 26.
    Shaddock, D., et al.: Overview of the LISA phasemeter. AIP Conf. Proc. 873, 689–696 (2006)CrossRefGoogle Scholar
  27. 27.
    Gerberding, O., et al.: Breadboard model of the LISA phasemeter. ASP Conference Series, 467, 271, 9th LISA Symposium (2012) arXiv.org/abs/1208.6418
  28. 28.
    Sutton, A.J., et al.: Improved optical ranging for space based gravitational wave detection. Class. Quantum Gravity 30, 075008 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Esteban, J.J., et al.: Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt. Express 19, 15937 (2011)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    McNamara, P.W.: Weak-light phase locking for LISA. Class. Quantum Gravity 22, S243 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Heinzel, G., et al.: Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication. Class. Quantum Gravity 28, 094008 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Gerberding, O., et al.: Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class. Quantum Gravity 30, 235029 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Magueijo, J., Mozaffari, A.: Case for testing modified Newtonian dynamics using LISA pathfinder. Phys. Rev. D 85, 043527 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Sumner, T.: Science with LISA pathfinder. ASP Conf. Ser. 467, 129–140 (2013)ADSGoogle Scholar
  35. 35.
    Graham, P.W., Hogan, J.M., Kasevich, M.A., Rajendran, S.: New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Sugarbaker, A., Dickerson, A.M., Hogan, J.M., Johnson, D.M.S., Kasevich, M.A.: Enhanced atom interferometer readout through the application of phase shear. Phys. Rev. Lett. 111, 113002 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Jennrich, O., et al.: LISA, Unveiling a hidden Universe: Assessment Study Report, ESA/SRE(2011) (2011)Google Scholar
  38. 38.
    Seto, N., Kawamura, S., Nakamura, T.: Possibility of direct measurement of the acceleration of the universe Using 0.1 Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Kawamura, S., et al.: The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Gravity 28, 094011 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Sesana
    • 1
  • W. J. Weber
    • 2
  • C. J. Killow
    • 3
  • M. Perreur-Lloyd
    • 3
  • D. I. Robertson
    • 3
  • H. Ward
    • 3
  • E. D. Fitzsimons
    • 4
  • J. Bryant
    • 5
  • A. M. Cruise
    • 5
  • G. Dixon
    • 5
  • D. Hoyland
    • 5
  • D. Smith
    • 5
  • J. Bogenstahl
    • 6
  • P. W. McNamara
    • 7
  • R. Gerndt
    • 4
  • R. Flatscher
    • 4
  • G. Hechenblaikner
    • 4
  • M. Hewitson
    • 8
  • O. Gerberding
    • 6
  • S. Barke
    • 6
  • N. Brause
    • 6
  • I. Bykov
    • 6
  • K. Danzmann
    • 6
  • A. Enggaard
    • 9
  • A. Gianolio
    • 7
  • T. Vendt Hansen
    • 9
  • G. Heinzel
    • 6
  • A. Hornstrup
    • 10
  • O. Jennrich
    • 7
  • J. Kullmann
    • 6
  • S. Møller-Pedersen
    • 10
  • T. Rasmussen
    • 9
  • J. Reiche
    • 6
  • Z. Sodnik
    • 7
  • M. Suess
    • 7
  • M. Armano
    • 11
  • T. Sumner
    • 12
  • P. L. Bender
    • 13
  • T. Akutsu
    • 14
  • DECIGO working group
  • B. S. Sathyaprakash
    • 15
  1. 1.Max-Planck-Institut für GravitationsphysikAlbert Einstein InstitutGolmGermany
  2. 2.Department of PhysicsUniversity of Trento, and Trento Institute for Fundamental Physics and Applications / INFNPovoItaly
  3. 3.SUPA, Institute for Gravitational Research, School of Physics and AstronomyGlasgow UniversityGlasgowUK
  4. 4.Airbus Defence and Space GmbHClaude-Dornier-StrasseImmenstaadGermany
  5. 5.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  6. 6.Institute for Gravitational PhysicsLeibniz Universität HannoverHannoverGermany
  7. 7.European Space Research and Technology CentreEuropean Space AgencyNoordwijkThe Netherlands
  8. 8.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstituteHannoverGermany
  9. 9.Axcon ApSKgs. LyngbyDenmark
  10. 10.DTU Space, National Space InstituteThe Technical University of DenmarkKgs. LyngbyDenmark
  11. 11.European Space Astronomy CentreEuropean Space AgencyMadridSpain
  12. 12.Imperial College LondonLondonUK
  13. 13.BoulderUSA
  14. 14.National Astronomical Observatory of JapanTokyoJapan
  15. 15.School of Physics and AstronomyCardiff UniversityCardiffUK

Personalised recommendations