Skip to main content
Log in

Towards experimentally studying some puzzles of Hawking radiation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the features of the non-corrected thermal (non-thermal) spectrum and the quantum corrected thermal (non-thermal) spectrum. We find that: (1) using the quantum corrected non-thermal spectra, the black hole radiation as tunneling is an entropy conservation process, and thus black hole evaporation process is unitary; (2) there are no obvious differences between all spectra except for near the Planck mass scale by comparing their average emission energies, average numbers of emissions and average emission energy fluctuations; (3) the energy covariances of Hawking radiations for all the thermal spectra are exactly zero, while they are nontrivial for all the non-thermal spectra. Especially, there are distinctly different maximums of energy covariances for the temperature-corrected and energy-corrected non-thermal spectra. Consequently, these differences provide a possible way towards experimentally analyzing whether the radiation spectrum of black hole is thermal or non-thermal with or without high order quantum corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For \(D\) dimensional Schwarzschild black hole, the fundamental Planck scale is reduced depending on the compact space of volume \(V_{D-4}\), e.g., the reduced Planck scale \(M_P\sim 1\,\mathrm {TeV}\) with \(D=10\) and \(V_6\sim fm^6\) [40].

References

  1. Hawking, S.W.: Nature (London) 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  4. Page, D.N.: Phys. Rev. D 13, 198 (1976)

    Article  ADS  Google Scholar 

  5. Krauss, L.M., Wilczek, F.: Phys. Rev. Lett. 62, 1221 (1989)

    Article  ADS  Google Scholar 

  6. Bekenstein, J.D.: Phys. Rev. Lett. 70, 3680 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Horowitz, G.T., Maldacena, J.: J. High Energy Phys. 02, 008 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hawking, S.W.: Phys. Rev. D 72, 084013 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Belokolos, E.D., Teslyk, M.V.: Class. Quantum Gravity 26, 235008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhang, B., Cai, Q., You, L., Zhan, M.: Phys. Lett. B 675, 98 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, B., Cai, Q., Zhan, M., You, L.: Ann. Phys. (N. Y.) 326, 350–363 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Zhang, B., Cai, Q., Zhan, M.: Chin. Phys. Lett. 29, 020401 (2012)

    Article  ADS  Google Scholar 

  14. Zhang, B., Cai, Q., Zhan, M., You, L.: Europhys. Lett. (EPL) 94, 20002 (2011)

    Article  ADS  Google Scholar 

  15. Nozari, K., Mehdipour, S.H.: Europhys. Lett. (EPL) 84, 20008 (2008)

    Article  ADS  Google Scholar 

  16. Chen, Y., Shao, K.: Phys. Lett. B 678, 131–134 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Israel, W., Yun, Z.: Phys. Rev. D 82, 124036 (2010)

    Article  ADS  Google Scholar 

  18. Banerjee, R., Majhi, B.R.: J. High Energy Phys. 06, 095 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lin, K., Yang, Sh: Europhys. Lett. (EPL) 86, 20006 (2009)

    Article  ADS  Google Scholar 

  20. Zhu, T., Ren, J., Li, M.: J. Cosmol. Astropart. Phys. 2009, 010 (2009)

    Article  Google Scholar 

  21. Majhi, B.R.: Phys. Rev. D 79, 044005 (2009)

    Article  ADS  Google Scholar 

  22. Modak, S.K.: Phys. Lett. B 671, 167–173 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Jiang, K., Feng, T., Peng, D.: Int J Theor Phys 48, 2112–2121 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiang, Q., Han, Y., Cai, X.: J. High Energy Phys. 2010, 49 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mirza, B., Shekatghanad, Z.: Phys. Rev. D 83, 104001 (2011)

    Article  ADS  Google Scholar 

  26. Singleton, D., Vagenas, E.C., Zhu, T., Ren, J.: J. High Energy Phys. 08, 089 (2010)

    Article  ADS  Google Scholar 

  27. Singleton, D., Vagenas, E.C., Zhu, T., Ren, J.: J. High Energy Phys. 01, 021 (2011)

    Article  ADS  Google Scholar 

  28. Wang, M., Ding, Ch., Chen, S., Jing, J.: Gen. Relativ. Gravit. 42, 347–357 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Yale, A.: Eur. Phys. J. C. 71, 1622 (2011)

    Article  ADS  Google Scholar 

  30. Zhang, B., Cai, Q., Zhan, M., You, L.: Phys. Rev. D 87, 044006 (2013)

    Article  ADS  Google Scholar 

  31. York Jr, J.K.: Phys. Rev. D 31, 775 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lousto, C.O., Sanchez, N.G.: Phys. Lett. B 212, 411 (1988)

    Article  ADS  Google Scholar 

  33. Fursaev, D.V.: Phys. Rev. D 51, 5352 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. Banerjee, R., Majhi, B.R.: Phys. Lett. B 662, 62–65 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Banerjee, R., Majhi, B.R., Samanta, S.: Phys. Rev. D 77, 124035 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Fabbri, A., Salas, J.N.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)

    Book  Google Scholar 

  37. Das, S., Majumdar, P., Bhaduri, P.K.: Class. Quantum Gravity 19, 2355 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. More, S.S.: Class. Quantum Gravity 22, 4192 (2005)

    Article  MathSciNet  Google Scholar 

  39. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. Giddings, S.B., Thomas, S.: Phys. Rev. D 65, 056010 (2002)

    Article  ADS  Google Scholar 

  41. Emparan, R., Horowitz, G.T., Myers, R.C.: Phys. Rev. Lett 85, 499 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  42. Dimopoulos, S., Landsberg, G.: Phys. Rev. lett 87, 161602 (2001)

    Article  ADS  Google Scholar 

  43. Meade, P., Randall, L.: J. High Energy Phys. 05, 003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. Collaboration, C.M.S.: Phys. Lett. B 697, 434 (2011)

    Article  ADS  Google Scholar 

  45. The CMS Collaboration : J. High Energy Phys. 04, 061 (2012)

  46. Mureika, J., Nicolini, P., Spallucci, E.: Phys. Rev. D 85, 106007 (2012)

    Article  ADS  Google Scholar 

  47. Unruh, W.G.: Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  48. Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Phys. Rev. Lett. 105, 203901 (2010)

    Article  ADS  Google Scholar 

  49. Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T.G., Leonhardt, U.: New J. Phys. 10, 053015 (2008)

    Article  ADS  Google Scholar 

  50. Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Phys. Rev. Lett. 106, 021302 (2011)

    Article  ADS  Google Scholar 

  51. Lahav, O., Itah, A., Blumkin, A., Gordon, C., Rinott, S., Zayats, A., Steinhauer, J.: Phys. Rev. Lett. 105, 240401 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11175065, 10935013; the National Basic Research of China under Grant No. 2010CB833004; the Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001; Hunan Provincial Innovation Foundation For Postgraduate under Grant No. CX2012B202; the Construct Program of the National Key Discipline

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Jing, J. Towards experimentally studying some puzzles of Hawking radiation. Gen Relativ Gravit 46, 1779 (2014). https://doi.org/10.1007/s10714-014-1779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1779-y

Keywords

Navigation