On the shape of bodies in general relativistic regimes

  • Martin ReirisEmail author
Editor's Choice (Research Article)


The analysis of axisymmetric spacetimes, dynamical or stationary, is usually made in the reduced space. We prove here a stability property of the quotient space and use it together with minimal surface techniques to constraint the shape of General Relativistic bodies in terms of their energy and rotation. These constraints are different in nature to the mechanical limitations that a particular material body can have and which can forbid, for instance, rotation faster than a certain rate, (after which the body falls apart). The relations we are describing instead are fundamental and hold for all bodies, albeit they are useful only in General Relativistic regimes. For Neutron stars they are close to be optimal, and, although precise models for these stars display tighter constraints, our results are significative in that they do not depend on the equation of state.


General relativity Radius Shape Angular momentum Rotating stars 



I would like to thank Sergio Dain for important conversations and to the many colleagues of FaMAF (Argentina) where these results were first discussed.


  1. 1.
    Bizon, P., Malec, E., O’Murchadha, N.: Trapped surfaces due to concentration of matter in spherically symmetric geometries. Class. Quantum Grav. 6, 961–976 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bray, H., Hayward, S., Mars, M., Simon, W.: Generalized inverse mean curvature flows in spacetime. Commun. Math. Phys. 272, 119–138 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Castillon, P.: An inverse spectral problem on surfaces. Comment. Math. Helvetici 81(2), 271–286 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chandrasekhar, S.: Ellipsoidal figures of equilibrium–an historical account. Commun. Pure Appl. Math. 20, 251–265 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), volume 71 of Contemp. Math., pp. 9–14. Am. Math. Soc., Providence, RI (1988)Google Scholar
  6. 6.
    Colding, T.H., Minicozzi, W.P.: Estimates for parametric elliptic integrands. Int. Math. Res. Not. 6, 291–297 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dain, S.: Axisymmetric evolution of Einstein equations and mass conservation. Class. Quantum Gravity 25, 145021 (2008)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dain, S.: Inequality between size and angular momentum for bodies. Phys. Rev. Lett. 112, 041101 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math. 82(1), 121–132 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gromov, M., Lawson, Jr., H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58:83–196 (1983)Google Scholar
  11. 11.
    Kawai, S.: Operator \(\Delta -aK\) on surfaces. Hokkaido Math. J. 17(2), 147–150 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Khuri, M.A.: The hoop conjecture in spherically symmetric spacetimes. Phys. Rev. D 80, 124025 (2009)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klenk, J.: Geometric properties of rotating stars in general relativity. Class. Quantum Gravity 15, 3203 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Meeks, III, W.H., Pérez, J., Ros, A.: Stable constant mean curvature surfaces. In: Handbook of Geometric Analysis. no. 1, volume 7 of Adv. Lect. Math. (ALM), pp. 301–380. Int. Press, Somerville, MA (2008)Google Scholar
  15. 15.
    Meinel, R., Ansorg, M., Kleinwächter, A., Neugebauer, G., Petroff, D.: Relativistic Figures of Equilibrium. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    O’Murchadha, N.: How large can a star be? Phys. Rev. Lett. 57, 2466–2469 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    Pogorelov, A.V.: On the stability of minimal surfaces. Dokl. Akad. Nauk SSSR 260(2), 293–295 (1981)MathSciNetGoogle Scholar
  18. 18.
    Reiris, M., Clement, M.E.G.: On the shape of rotating black-holes. Phys. Rev. D 88, 044031 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Schoen, R., Yau, S.T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys 90(4), 575–579 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Shiohama, K., Shioya, T., Tanaka, M.: The Geometry of Total Curvature on Complete Open Surfaces, volume 159 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  21. 21.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  22. 22.
    Stergioulas, N.: Rotating stars in relativity. Living Rev. Rel. 6, 3 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Max Planck Institute für GravitationsphysikGolmGermany

Personalised recommendations