Summary of session C1: pulsar timing arrays

  • R. M. Shannon
  • S. Chamberlin
  • N. J. Cornish
  • J. A. Ellis
  • C. M. F. Mingarelli
  • D. Perrodin
  • P. Rosado
  • A. Sesana
  • S. R. Taylor
  • L. Wen
  • C. G. Bassa
  • J. Gair
  • G. H. Janssen
  • R. Karuppusamy
  • M. Kramer
  • K. J. Lee
  • K. Liu
  • I. Mandel
  • M. Purver
  • T. Sidery
  • R. Smits
  • B. W. Stappers
  • A. Vecchio
Review Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10

Abstract

This paper summarizes parallel session C1: Pulsar Timing Arrays of the Amaldi10/GR20 Meeting held in Warsaw, Poland in July 2013. The session showcased recent results from pulsar timing array collaborations, advances in modelling the gravitational-wave signal, and new methods to search for and characterize gravitational waves in pulsar timing array observations.

Keywords

Gravitational waves Pulsars 

References

  1. 1.
    Sesana, A., Vecchio, A., Colacino, C.N.: The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. MNRAS 390, 192 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Sesana, A.: Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. MNRAS 433, 1 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Hlavacek-Larrondo, J., et al.: On the hunt for ultramassive black holes in brightest cluster galaxies. MNRAS 424, 224 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Shannon, R.M., et al.: Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science 342, 334 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    van Haasteren, R., Levin, Y., McDonald, P., Lu, T.: On measuring the gravitational-wave background using pulsar timing arrays. MNRAS 395, 1005 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Ölmez, S., Mandic, V., Siemens, X.: Gravitational-wave stochastic background from kinks and cusps on cosmic strings. Phys. Rev. D 81, 104028 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Starobinskiǐ, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. Sov. J. Exp. Theor. Phys. Lett. 30, 682 (1979)ADSGoogle Scholar
  9. 9.
    Caprini, C., Durrer, R., Siemens, X.: Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys. Rev. D 82, 063511 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Jaffe, A.H., Backer, D.C.: Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys. J. 583, 616 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Sesana, A., Vecchio, A., Volonteri, M.: Gravitational waves from resolvable massive black hole binary systems and observations with pulsar timing arrays. MNRAS 394, 2255 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 265, L39 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R., Siemens, X.: Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 79, 084030 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Wen, L., Chen, Y.: Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 082001 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Boyle, L., Pen, U.-L.: Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion. Phys. Rev. D 86, 124028 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Wen, L., Schutz, B.F.: Coherent network detection of gravitational waves: the redundancy veto. Class. Quantum Gravit. 22, 1321 (2005)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Chatterji, S., et al.: Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys. Rev. D 74, 082005 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wen, L.: Data analysis of gravitational waves using a network of detectors. Int. J. Mod. Phys. D 17, 1095 (2008)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Ellis, J.A.: A Bayesian analysis pipeline for continuous GW sources in the PTA band. Class. Quantum Gravit. 30, 224004 (2013)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ellis, J.A., Siemens, X., Creighton, J.D.E.: Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Manchester, R.N., et al.: The parkes pulsar timing array project. PASA 30, 17 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Ferdman, R.D., et al.: The European pulsar timing array: current efforts and a LEAP toward the future. Class. Quantum Gravit. 27, 084014 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Hobbs, G., et al.: The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Gravit 27, 084013 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Demorest, P.B., et al.: Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Mingarelli, C.M.F., Sidery, T., Mandel, I., Vecchio, A.: Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays. Phys. Rev. D 88(8), 062005 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Taylor, S.R., Gair, J.R.: Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays. Phys. Rev. D 88(8), 084001 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    van Haasteren, R.: Accelerating pulsar timing data analysis. Mon. Not. R. Astron. Soc. 429, 55–62 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Ravi, V., Wyithe, J.S.B., Hobbs, G., et al.: Does a “stochastic” background of gravitational waves exist in the pulsar timing band? Astrophys. J. 761, 84 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Hobbs, G.B., Edwards.: The Australia Telescope Compact Array (/ Parkes radio telescope / Mopra radio telescope / Long Baseline Array) is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. R. T., & Manchester, R. N. 2006, MNRAS, 369, 655Google Scholar
  31. 31.
    Cornish, N.J., Sesana, A.: Pulsar timing array analysis for black hole backgrounds. Class. Quantum Gravit. 30, 224005 (2013)ADSCrossRefMATHGoogle Scholar
  32. 32.
    Corbin, V., Cornish, N.J.: Pulsar timing array observations of massive black hole binaries arXiv:1008.1782 (2010)
  33. 33.
    Deng, X., Finn, L.S.: Pulsar timing array observations of gravitational wave source timing parallax. MNRAS 414, 50 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Lee, K.J., et al.: Gravitational wave astronomy of single sources with a pulsar timing array. MNRAS 414, 3251 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Rosado, P.A., Sesana, A.: Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. MNRAS, arXiv:1311.0883 (2013, submitted to)
  36. 36.
    York, D.G., et al.: The sloan digital sky survey: technical summary. Astrophys. J. 120, 1579 (2000)Google Scholar
  37. 37.
    Abazajian, K., et al.: The seventh data release of the sloan digital sky survey. Astrophys. J. Suppl. 182, 543 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Guo, Q., et al.: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a \(\Lambda \)CDM cosmology. MNRAS 413, 101 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Ellison, S.L., et al.: Galaxy pairs in the Sloan Digital Sky Survey- VIII. The observational properties of post-merger galaxies. MNRAS 435, 3627 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Hobbs, G., et al.: Development of a pulsar-based time-scale. MNRAS 427, 2780 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    McWilliams, S.T., Ostriker, J.P., Pretorius, F.: Gravitational waves and stalled satellites from massive galaxy mergers at \(z \le 1\). arXiv:1211.5377 (2012)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. M. Shannon
    • 1
  • S. Chamberlin
    • 2
  • N. J. Cornish
    • 3
  • J. A. Ellis
    • 2
  • C. M. F. Mingarelli
    • 4
  • D. Perrodin
    • 5
  • P. Rosado
    • 6
  • A. Sesana
    • 6
  • S. R. Taylor
    • 7
  • L. Wen
    • 8
  • C. G. Bassa
    • 9
  • J. Gair
    • 7
  • G. H. Janssen
    • 9
  • R. Karuppusamy
    • 10
  • M. Kramer
    • 10
  • K. J. Lee
    • 10
  • K. Liu
    • 11
  • I. Mandel
    • 4
  • M. Purver
    • 9
  • T. Sidery
    • 4
  • R. Smits
    • 12
  • B. W. Stappers
    • 9
  • A. Vecchio
    • 4
  1. 1.CSIRO Astronomy and Space ScienceEppingAustralia
  2. 2.University of WisconsinMilwaukeeUSA
  3. 3.Montana State UniversityBozemanUSA
  4. 4.University of BirminghamBirminghamUK
  5. 5.Osservatorio Astronomico di CagliariCagliariItaly
  6. 6.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany
  7. 7.University of CambridgeCambridgeUK
  8. 8.University of Western AustraliaCrawleyAustralia
  9. 9.Jodrell Bank Centre for AstrophysicsUniversity of ManchesterManchesterUK
  10. 10.Max Planck Institute for Radio AstronomyBonnGermany
  11. 11.CNRS, Nançay ObservatoryOrleansFrance
  12. 12.ASTRONDwingelooThe Netherlands

Personalised recommendations