Advertisement

Parameter estimation of a nonlinear magnetic universe from observations

  • Ariadna Montiel
  • Nora Bretón
  • Vincenzo Salzano
Research Article

Abstract

The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian \(\mathcal {L}= \gamma F^{\alpha },\, F\) being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance \(\varOmega _B\), gives as best fit from the combination of all observational data sets \(\varOmega _B=0.562^{+0.037}_{-0.038}\) for the scenario in which \(\alpha =-1, \varOmega _B=0.654^{+0.040}_{-0.040}\) for the scenario with \(\alpha =-1/4\) and \(\varOmega _B=0.683^{+0.039}_{-0.043}\) for the one with \(\alpha =-1/8\). These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.

Keywords

Dark energy Nonlinear electrodynamics Observational constraints 

Notes

Acknowledgments

A. M. acknowledges financial support from CONACyT (Mexico) through a Ph.D. Grant. N. B. acknowledges partial support by Conacyt, Project 166581. We also acknowledge to the anonymous referee whose suggestions lead to improve our work.

References

  1. 1.
    Novello, M., Perez Bergliaffa, S.E., Salim, J.: Phys. Rev. D 69, 127301 (2004). doi: 10.1103/PhysRevD.69.127301 ADSCrossRefGoogle Scholar
  2. 2.
    Novello, M., Goulart, E., Salim, J., Perez Bergliaffa, S.: Class. Quantum Gravity 24, 3021 (2007). doi: 10.1088/0264-9381/24/11/015 ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Vollick, D.N.: Phys. Rev. D 78, 063524 (2008). doi: 10.1103/PhysRevD.78.063524 ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Labun, L., Rafelski, J.: Phys. Rev. D 81, 065026 (2010). doi: 10.1103/PhysRevD.81.065026 ADSCrossRefGoogle Scholar
  5. 5.
    García-Salcedo, R., Gonzalez, T., Quiros, I.: Phys. Rev. D 89, 084047 (2014). doi: 10.1103/PhysRevD.89.084047 ADSCrossRefGoogle Scholar
  6. 6.
    Dyadichev, V., Gal’tsov, D., Zorin, A., Zotov, M.Y.: Phys. Rev. D 65, 084007 (2002). doi: 10.1103/PhysRevD.65.084007 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elizalde, E., Lidsey, J.E., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 574, 1 (2003). doi: 10.1016/j.physletb.2003.08.074 ADSCrossRefMATHGoogle Scholar
  8. 8.
    Beltran Jimenez, J., Maroto, A.L.: Phys. Rev D 78, 063005 (2008). doi: 10.1103/PhysRevD.78.063005 ADSCrossRefGoogle Scholar
  9. 9.
    Beltran Jimenez, J., Maroto, A.L.: JCAP 0903, 016 (2009). doi: 10.1088/1475-7516/2009/03/016 ADSCrossRefGoogle Scholar
  10. 10.
    Beltran Jimenez, J., Maroto, A.L.: AIP Conf. Proc. 1122, 107 (2009). doi: 10.1063/1.3141226 ADSCrossRefGoogle Scholar
  11. 11.
    Medeiros, L.: Int. J. Mod. Phys. D 23, 1250073 (2012). doi: 10.1142/S0218271812500733 CrossRefGoogle Scholar
  12. 12.
    Plebański, J.: Lectures on non-linear electrodynamics: an extended version of lectures given at the Niels Bohr Institute and NORDITA, Copenhagen, in October 1968 (NORDITA, 1970)Google Scholar
  13. 13.
    Mottola, E.: Proceedings of the XLVth Rencontres de Moriond, 2010 Cosmology, edited by E. Auge, J. Dumarchez and J. Tran Tranh an, The Gioi Publishers, Vietnam (2010)Google Scholar
  14. 14.
    Mosquera Cuesta, H.J., Salim, J.M., Novello, M.: (2007). arXiv: 0710.5188
  15. 15.
    Born, M., Infeld, L.: Proc. R. Soc. Lond. A 144, 425 (1934)ADSCrossRefGoogle Scholar
  16. 16.
    Tolman, R.C., Ehrenfest, P.: Phys. Rev. 36, 1791 (1930). doi: 10.1103/PhysRev.36.1791 ADSCrossRefGoogle Scholar
  17. 17.
    Armendariz-Picon, C.: JCAP 0407, 007 (2004). doi: 10.1088/1475-7516/2004/07/007 ADSCrossRefGoogle Scholar
  18. 18.
    Cembranos, J., Hallabrin, C., Maroto, A., Jareno, S.N.: Phys. Rev. D 86, 021301 (2012). doi: 10.1103/PhysRevD.86.021301 ADSCrossRefGoogle Scholar
  19. 19.
    Novello, M.: Int. J. Mod. Phys. A 20, 2421 (2005). doi: 10.1142/S0217751X05024717 ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lemoine, D., Lemoine, M.: Phys. Rev. D 52, 1955 (1995). doi: 10.1103/PhysRevD.52.1955 ADSCrossRefGoogle Scholar
  21. 21.
    Novello, M., Araujo, A.N., Salim, J.: Int. J. Mod. Phys. A 24, 5639 (2009). doi: 10.1142/S0217751X09046321 ADSCrossRefMATHGoogle Scholar
  22. 22.
    Chayan Ranjit, U.D., Chakraborty, Shuvendu: Astrophys. Space Sci 346, 291 (2013). doi: 10.1007/s10509-013-1441-2 ADSCrossRefGoogle Scholar
  23. 23.
    Heisenberg, W., Euler, H.: Z. Phys. 38, 714 (1936)ADSCrossRefGoogle Scholar
  24. 24.
    Pagels, H., Tomboulis, E.: Nucl. Phys. B 143, 485 (1978). doi: 10.1016/0550-3213(78)90065-2 ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Novello, M., Salim, J., Araujo, A.N.: Phys. Rev. D 85, 023528 (2012). doi: 10.1103/PhysRevD.85.023528 ADSCrossRefGoogle Scholar
  26. 26.
    Esposito-Farese, G., Pitrou, C., Uzan, J.P.: Phys. Rev. D 81, 063519 (2010). doi: 10.1103/PhysRevD.81.063519 ADSCrossRefGoogle Scholar
  27. 27.
    Golovnev, A., Klementev, A.: JCAP 1402, 033 (2014). doi: 10.1088/1475-7516/2014/02/033 ADSCrossRefGoogle Scholar
  28. 28.
    Sola, J., Stefancic, H.: Phys. Lett. B624, 147 (2005). doi: 10.1016/j.physletb.2005.08.051 ADSCrossRefGoogle Scholar
  29. 29.
    Caldwell, R.: Phys. Lett. B 545, 23 (2002). doi: 10.1016/S0370-2693(02)02589-3 ADSCrossRefGoogle Scholar
  30. 30.
    Ade, P., et al.: (2013). arXiv: 1303.5076
  31. 31.
    Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah, R., et al.: Astrophys. J. 746, 85 (2012). doi: 10.1088/0004-637X/746/1/85 ADSCrossRefGoogle Scholar
  32. 32.
    Moresco, M., Verde, L., Pozzetti, L., Jimenez, R., Cimatti, A.: JCAP 1207, 053 (2012). doi: 10.1088/1475-7516/2012/07/053 ADSCrossRefGoogle Scholar
  33. 33.
    Jimenez, R., Loeb, A.: Astrophys. J. 573, 37 (2002). doi: 10.1086/340549 ADSCrossRefGoogle Scholar
  34. 34.
    Tsutsui, R., Nakamura, T., Yonetoku, D., Takahashi, K., Morihara, Y.: (2012). arXiv: 1205.2954
  35. 35.
    Kodama, Y., Yonetoku, D., Murakami, T., Tanabe, S., Tsutsui, R., Nakamura, T.: Mon. Not. R. Astron. Soc. 391, L1 (2008). doi: 10.1111/j.1745-3933.2008.00508.x ADSCrossRefGoogle Scholar
  36. 36.
    Liang, N., Xiao, W.K., Liu, Y., Zhang, S.N.: Astrophys. J. 685, 354 (2008). doi: 10.1086/590903 ADSCrossRefGoogle Scholar
  37. 37.
    Wei, H., Zhang, S.N.: Eur. Phys. J. C 63, 139 (2009). doi: 10.1140/epjc/s10052-009-1086-z ADSCrossRefGoogle Scholar
  38. 38.
    Wei, H.: JCAP 1008, 020 (2010). doi: 10.1088/1475-7516/2010/08/020 ADSCrossRefGoogle Scholar
  39. 39.
    Wang, Y.: Phys. Rev. D 78, 123532 (2008). doi: 10.1103/PhysRevD.78.123532 ADSCrossRefGoogle Scholar
  40. 40.
    Cardone, V.F., Capozziello, S., Dainotti, M.G.: Mon. Not. R. Astron. Soc. 400(2), 775 (2009). doi: 10.1111/j.1365-2966.2009.15456.x ADSCrossRefGoogle Scholar
  41. 41.
    Mosquera Cuesta, H.J., H. Dumet M., Furlanetto, C.: JCAP 0807, 004 (2008). doi: 10.1088/1475-7516/2008/07/004
  42. 42.
    Liang, N., Wu, P., Zhang, S.N.: Phys. Rev. D 81, 083518 (2010). doi: 10.1103/PhysRevD.81.083518 ADSCrossRefGoogle Scholar
  43. 43.
    Freitas, R., Goncalves, S., Velten, H.: Phys. Lett. B 703, 209 (2011). doi: 10.1016/j.physletb.2011.07.070 ADSCrossRefGoogle Scholar
  44. 44.
    Graziani, C.: New Astron. 16, 57 (2011). doi: 10.1016/j.newast.2010.08.001 ADSCrossRefGoogle Scholar
  45. 45.
    Collazzi, A.C., Schaefer, B.E., Goldstein, A., Preece, R.D.: Astrophys. J. 747, 39 (2012). doi: 10.1088/0004-637X/747/1/39 ADSCrossRefGoogle Scholar
  46. 46.
    Butler, N.R., Kocevski, D., Bloom, J.S.: Astrophys. J. 694(1), 76 (2009). doi: 10.1088/0004-637X/694/1/76 ADSCrossRefGoogle Scholar
  47. 47.
    Shahmoradi, A., Nemiroff, R.: Mon. Not. R. Astron. Soc. 411, 1843 (2011). doi: 10.1111/j.1365-2966.2010.17805.x ADSCrossRefGoogle Scholar
  48. 48.
    Butler, N.R., Bloom, J.S., Poznanski, D.: Astrophys. J. 711, 495 (2010). doi: 10.1088/0004-637X/711/1/495 ADSCrossRefGoogle Scholar
  49. 49.
    Dunkley, J., Bucher, M., Ferreira, P.G., Moodley, K., Skordis, C.: Mon. Not. R. Astron. Soc. 356, 925 (2005). doi: 10.1111/j.1365-2966.2004.08464.x ADSCrossRefGoogle Scholar
  50. 50.
    Berg, B.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis: With Web-based Fortran Code. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  51. 51.
    MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambrdige University Press, Cambrdige (2003)MATHGoogle Scholar
  52. 52.
    Neal, R.M.: Probabilistic inference using markov chain monte carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto (1993)Google Scholar
  53. 53.
    Riess, A.G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H.C., et al.: Astrophys. J. 730, 119 (2011). doi: 10.1088/0004-637X/730/2/119

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ariadna Montiel
    • 1
  • Nora Bretón
    • 1
  • Vincenzo Salzano
    • 2
  1. 1.Dpto. de FísicaCentro de Investigación y de Estudios Avanzados del I. P. N.MexicoMexico
  2. 2.Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia FakultateaEuskal Herriko Unibertsitatea UPV/EHUBilbaoSpain

Personalised recommendations