Topology of the Misner space and its \(g\)-boundary

  • Juan Margalef-Bentabol
  • Eduardo J. S. Villaseñor
Research Article


The Misner space is a simplified 2-dimensional model of the 4-dimensional Taub-NUT space that reproduces some of its pathological behaviours. In this paper we provide an explicit base of the topology of the complete Misner space \(\mathbb {R}^{1,1}/boost\). Besides we prove that some parts of this space, that behave like topological boundaries, are equivalent to the \(g\)-boundaries of the Misner space.


Misner space g-Boundary Spacetime topology 



The authors are very grateful to Juan Margalef Roig and Miguel Sánchez Caja for their useful comments and support, and specially to Fernando Barbero and Robert Geroch for their patience, comments and priceless help. This work has been supported by the Spanish MINECO research Grant FIS2012-34379 and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042).


  1. 1.
    Durin Bruno, B., Pioline, B.: Closed strings in misner space: a toy model for a big bounce?, String theory: from gauge interactions to cosmology. arXiv:hep-th/0501145v2, Springer, pp. 177–200 (2006)
  2. 2.
    Flores, J.L., Herrera, J., Sánchez, M.: Hausdorff separability of the boundaries for spacetimes and sequential spaces, Preprint (2014)Google Scholar
  3. 3.
    Geroch, R.: Local characterization of singularities in general relativity. J. Math. Phys. 9, 450 (1968)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Geroch, R.: What is a singularity in general relativity? Ann. Phys. 48(3), 526–540 (1968)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Geroch, R., Can-bin, L., Wald, R.M.: Singular boundaries of space–times. J. Math. Phys. 23, 432 (1982)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hajicek, P.: Embedding of singularities. Gen. Relativ. Gravit. 1(1), 27–29 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    Hawking, S.W.: Singularities and the Geometry of Space–Time. Unpublished Essay Submitted for the Adams Prize. Cambridge University, Cambridge (1966)Google Scholar
  8. 8.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambrigde University Press, Cambrigde (1973)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hikida, Y., Nayak, R.R., Panigrahi, K.L.: D-branes in a big bang/big crunch universe: Misner space. J. High Energy Phys. arXiv:hep-th/0508003v2 2005(09),023 (2005)
  10. 10.
    Javaloyes Victoria, M.A., Sánchez Caja, M.: An Introduction to Lorentzian Geometry and its Applications, Ed. Universidad de Sao Paulo, (2010)Google Scholar
  11. 11.
    Jonsson, R.M.: Visualizing curved spacetime. Am. J. Phys. arXiv:0708.2483v1
  12. 12.
    Lévy-Leblond, J.M.: Speed(s). Am. J. Phys. 48, 345–347 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    Margalef Roig, J., Outerelo Domínguez, E.: Introducción a la topología, Ed. Complutense, (1993)Google Scholar
  14. 14.
    Misner, C.W.: Taub-NUT as a counterexample to almost anything. Tech. Rep. Uni. Maryland 529, 1–22 (1965)Google Scholar
  15. 15.
    Munkres, J.R.: Topology, vol. 2. Prentice Hall, Upper Saddle River (2000)Google Scholar
  16. 16.
    O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic Press, New York (1983)zbMATHGoogle Scholar
  17. 17.
    Thorne, K.S.: Misner space as a prototype for almost any pathology, directions in general relativity: Papers in Honor of Charles Misner, 1, vol. 1, p. 333 (1993)Google Scholar
  18. 18.
    Willard, S.: General Topology. Courier Dover Publications, New York (2004)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Juan Margalef-Bentabol
    • 1
    • 2
  • Eduardo J. S. Villaseñor
    • 3
  1. 1.Instituto de Estructura de la MateriaCSICMadridSpain
  2. 2.Unidad Asociada al IEM-CSIC, Grupo de Teorías de Campos y Física Estadística, Instituto Universitario Gregorio Millán BarbanyGrupo de Modelización y Simulación Numérica, Universidad Carlos III de MadridMadridSpain
  3. 3.Unidad Asociada al IEM-CSIC, Grupo de Teorías de Campos y Física Estadística, Instituto Universitario Gregorio Millán Barbany, Grupo de Modelización y Simulación NuméricaUniversidad Carlos III de MadridMadridSpain

Personalised recommendations