Space-borne gravitational wave observatories

Research Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10

Abstract

The paper describes the progress toward a space-borne gravitational wave observatory and its foreseeable science potential. In particular the paper describes the status of the LISA-like mission called eLISA, the reference mission for the Gravitational Universe theme adopted by ESA for its Large mission L3, and the status of its precursor LISA Pathfinder, due to launch in 2015.

Keywords

Gravitational wave observatories Space-missions LISA Pathfinder 

Notes

Acknowledgments

I thank Karsten Danzmann, Paul McNamara and Bill Weber for their critical reading of the manuscript.

References

  1. 1.
    Vitale, S., et al.: Lisa and its in-flight test precursor on smart-2. Nucl. Phys. B (Proc. Suppl.) 110, 209 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Amaro Seoane, P., et al.: The Gravitational Universe arXiv:1305.5720 [astro-ph.CO], (2013)
  3. 3.
    http://sci.esa.int/ngo/49839-ngo-assessment-study-report-yellow-book/#Google Scholar
  4. 4.
    Seto, N., Kawamura, S., Nakamura, T.: Possibility of direct measurement of the acceleration of the universe using 0.1 hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Crowder, J., Cornish, N.J.: Beyond lisa: exploring future gravitational wave missions. Phys. Rev. D 72, 083005 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Livas, J., et al.: SGO Mid: A LISA-like concept for the space-based gravitational-wave observatory (SGO) at a middle price-point, http://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0015-Livas
  7. 7.
  8. 8.
    Congedo, G., et al.: Space-borne gravitational-wave detectors as time-delayed differential dynamometers. Phys. Rev. D 88, 082003 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Anza, S., et al.: The ltp experiment on the lisa pathfinder mission. Class. Quantum Gravit. 22, S125–S138 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Amaro-Seoane, P., et al.: Low-frequency gravitational-wave science with elisa/ngo. Class. Quantum Gravit. 29, 124016 (2012). doi:10.1088/0264-9381/29/12/124016 ADSCrossRefGoogle Scholar
  11. 11.
    Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Rev. Relat. 8, 4 (2005)ADSGoogle Scholar
  12. 12.
    de Vine, G., et al.: Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett. 104, 211103 (2010)Google Scholar
  13. 13.
    Mitryk, S.J., Mueller, G., Sanjuan, J.: Hardware-based demonstration of time-delay interferometry and tdi-ranging with spacecraft motion effects. Phys. Rev. D 86, 122006 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Dolesi, R., et al.: Gravitational sensor for lisa and its technology demonstration mission. Class. Quantum Gravit. 20, S99S108 (2003)CrossRefGoogle Scholar
  15. 15.
    Robertson, D.I., et al.: Construction and testing of the optical bench for lisa pathfinder. Class. Quantum Gravit. 30, 085006 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Audley, H., et al.: The lisa pathfinder interferometryhardware and system testing. Class. Quantum Gravit. 28, 094003 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Matticari, G., et al.: Cold gas micro propulsion prototype for very fine spacecraft attitude/position control. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit American Institute of Aeronautics and Astronautics (2006) doi:10.2514/6.2006-4872
  18. 18.
    Antonucci, F., et al.: Lisa pathfinder data analysis. Class. Quantum Gravit. 28, 094006 (2011). doi:10.1088/0264-9381/28/9/094006 ADSCrossRefGoogle Scholar
  19. 19.
    Ferraioli, L., Hueller, M., Vitale, S.: Discrete derivative estimation in lisa pathfinder data reduction. Class. Quantum Gravit. 26, 094013 (2009). doi:10.1088/0264-9381/26/9/094013 ADSCrossRefGoogle Scholar
  20. 20.
    Grynagier, A., Fichter, W., Vitale, S.: The lisa pathfinder drift mode: implementation solutions for a robust algorithm. Class. Quantum Gravit. 26, 094007 (2009). doi:10.1088/0264-9381/26/9/094007 ADSCrossRefGoogle Scholar
  21. 21.
    The LTP data analysis tool (LTPDA) is downloadable at http://www.lisa.aei-hannover.de/ltpda/
  22. 22.
    Carbone, L., et al.: Achieving geodetic motion for lisa test masses: ground testing results. Phys. Rev. Lett. 91, 151101 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Cavalleri, A., et al.: A new torsion pendulum for testing the limits of free-fall for lisa test masses. Class. Quantum Gravit. 26, 094017 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Carbone, L., et al.: Thermal gradient-induced forces on geodesic reference masses for lisa. Phys. Rev. D 76, 102003 (2007)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Cavalleri, A., et al.: Increased brownian force noise from molecular impacts in a constrained volume. Phys. Rev. Lett. 103, 140601 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Antonucci, F., et al.: The interaction between stray electrostatic fields and a charged free-falling test mass. Phys. Rev. Lett. 108, 181101 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Antonucci, F., et al.: The lisa pathfinder mission. Class. Quantum Gravit. 29, 124014 (2012). doi:10.1088/0264-9381/29/12/124014 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TrentoPovo, TrentoItaly
  2. 2.INFN Trento Institute for Fundamental Physics and ApplicationTrentoItaly

Personalised recommendations