Summary of session C9: experimental gravitation

  • Claus Lämmerzahl
  • Jürgen Müller
Review Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10


General relativity (GR) is based on the Universality of Free Fall, the Universality of the Gravitational Redshift, and Local Lorentz Invariance, alltogether called the Einstein Equivalence principle. This implies that gravity has to be described by a metrical theory. Such theories in general give rise to the standard effects like perihelion shift, light deflection, gravitational time delay, Lense-Thirring effect, and the Schiff effect. Only if the underlying theory is Einstein’s GR we have certain values for these effects. GR in turn predicts the existence, certain properties, and a particular dynamics of gravitational waves, black holes, binary systems, etc. which are also subject to experimental/observational proof. This includes practical applications in clock synchronization, positioning, navigation and geodesy.


Experimental gravitation Equivalence principle Lorentz invariance Clocks Atom interferometry Geodesy  Lunar laser ranging Solar system tests Astronomy Binary systems 



We would like to thank the center of excellence QUEST for support. C.L. also would like to acknowledge the support of the DFG funded Research Training Group 1620 “Models of Gravity”.


  1. 1.
    Will, C.M.: Theory and Experiment in Gravitational Physics, revised edn. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  2. 2.
    Lämmerzahl, C.: Testing basic laws of gravitation—are our postulates on dynamics and gravitation supported by experimental evidence? In: Blanchet, L., Spallicci, A., Whiting, B. (eds.) Mass and Motion in General Relativity, Fundamental Theories of Physics 162, p. 25. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Lämmerzahl, C., Perlick, V., Hasse, W.: Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D 86, 104042 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Kreuzer, L.B.: Experimental measurement of the equivalence of active and passive gravitational mass. Phys. Rev. 169, 1007 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    Bartlett, D.F., van Buren, D.: Equivalence of active and passive gravitational mass using the moon. Phys. Rev. Lett. 57, 21 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Zoest, Tv, Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Könemann, T., Müntinga, H., Lämmerzahl, C., Dittus, H., Steinmetz, T., Hänsch, T.W., Reichel, J.: Bose–Einstein condensation in microgravity. Science 328, 1540 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Müntinga, H., Ahlers, H., Krutzik, M., Wenzlawski, A., Arnold, S., Becker, D., Bongs, K., Dittus, H., Duncker, H., Gaaloul, N., Gherasim, C., Giese, E., Grzeschik, C., Hänsch, T.W., Hellmig, O., Herr, W., Herrmann, S., Kajari, E., Kleinert, S., Lämmerzahl, C., Lewoczko-Adamczyk, W., Malcolm, J., Meyer, N., Nolte, R., Peters, A., Popp, M., Reichel, J., Roura, A., Rudolph, J., Schiemangk, M., Schneider, M., Seidel, S.T., Sengstock, K., Tamma, V., Valenzuela, T., Vogel, A., Walser, R., Wendrich, T., Windpassinger, P., Zeller, W., van Zoest, T., Ertmer, W., Schleich, W.P., Rasel, E.M.: Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Aguilera, D., Ahlers, H., Battelier, B., Bawamia, A., Bertoldi, A., Bondarescu, R., Bongs, K., Bouyer, P., Braxmaier, C., Cacciapuoti, L., Chaloner, C., Chwalla, M., Ertmer, W., Franz, M., Gaaloul, N., Gehler, M., Gerardi, D., Gesa, L., Gürlebeck, N., Hartwig, J., Hauth, M., Hellmig, O., Herr, W., Herrmann, S., Heske, A., Hinton, A., Ireland, P., Jetzer, P., Johann, U., Krutzik, M., Kubelka, A., Lämmerzahl, C., Landragin, A., Lloro, I., Massonnet, D., Mateos, I., Milke, A., Nofrarias, M., Oswald, M., Peters, A., Posso-Trujillo, K., Rasel, E., Rocco, E., Roura, A., Rudolph, J., Schleich, W., Schubert, C., Schuldt, T., Seidel, S., Sengstock, K., Sopuerta, C. F., Sorrentino, F., Summers, D., Tino, G. M., Trenkel, C., Uzunoglu, N., von Klitzing, W., Walser, R., Wendrich, T., Wenzlawski, A., Weels, P., Wicht, A., Wille, E., Williams, M., Windpassinger, P., Zahzahm, N.: STE-QUEST - Test of the Universality of Free Fall Using Cold Atom Interferometry, arXiv:1312.5980 [quant-ph]
  9. 9.
    Schubert, C., Hartwig, J., Ahlers, H., Posso-Trujillo, K., Gaaloul, N., Velte, U., Landragin, A., Bertoldi, A., Battelier, B., Bouyer, P., Sorrentino, F., Tino, G.M., Krutzik, M., Peters, A., Herrmann, S., Lämmerzahl, C., Cacciapouti, L., Rocco, E., Bongs, K., Ertmer, W., Rasel, E. M.: Differential atom interferometry with \({}^{87}{{\rm Rb}}\) and \({}^{85}{{\rm Rb}}\) for testing the UFF in STE-QUEST, arXiv:1312.5963 [physics.atom-ph]
  10. 10.
    Barrett, B., Gominet, P.-A., Cantin, E., Antoni-Micollier, L., Bertoldi, A., Battelier, B., Bouyer, P., Lautier, J., Landragin, A.: Mobile and remote inertial sensing with atom interferometers, arXiv:1311.7033 [physics.atom-ph]
  11. 11.
    Hohensee, M.A., Chu, S., Peters, A., Müller, H.: Equivalence principle and gravitational redshift. Phys. Rev. Lett. 106, 151102 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Wolf, P., Blanchet, L., Bordé, ChJ, Reynaud, S., Salomon, Ch., Cohen-Tannoudji, C.: Atom gravimeters and gravitational redshift. Nature 467, E1 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Müller, H., Peters, A., Chu, S.: Reply to: atom gravimeters and the gravitational redshift. Nature 467, E2 (2010)CrossRefGoogle Scholar
  14. 14.
    Wolf, P., Blanchet, L., Bordé, ChJ, Reynaud, S., Salomon, Ch., Cohen-Tannoudji, C.: Does an atom interferometer test the gravitational redshift at the Compton frequency? Class. Quantum Grav. 28m, 145017 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Hohensee, M.A., Chu, S., Peters, A., Müller, H.: Comment on ‘does an atom interferometer test the gravitational redshift at the Compton frequency?’. Class. Quantum Grav. 29, 048001 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Hohensee, M.A., Estey, B., Hamilton, P., Zeilinger, A., Müller, H.: Force-free gravitational redshift: proposed gravitational Aharonov–Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Bordé, Ch.J.: Bose-Einstein condensates and atom lasers, C. R. Acad. Sci. Paris 2, Serie IV, 509 (2002)Google Scholar
  18. 18.
    Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T.: Frequency comparison of two High-accuracy \({\rm Al}^+\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Bloom, B.J., Nicholson, T. L., Williams, J. R., Campbell, S.L., Bishof, M., Zhang, X., Zhang, W., Bromley, S. L., Ye, J.: An optical lattice clock with accuracy and stability at the \(10^{-18}\) level, arXiv:1309.1137 [physics.atom-ph]
  20. 20.
    Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with \(10^{-18}\) instability. Science 341, 1215 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Tobar, M.E., Stanwix, P.L., McFerran, J.J., Guéna, J., Abgrall, M., Bize, S., Clairon, A., Laurent, Ph, Rosenbusch, P., Rovera, D., Santarelli, G.: Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers. Phys. Rev. D 87, 122004 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Delva, P., Meynadier, F., Wolf, P., Le Poncin-Lafitte, C., Laurent, P.: Time and frequency transfer with a microwave link in the ACES/PHARAO mission, arXiv:1206.6239 []
  23. 23.
    Bondarescu, R., Bondarescu, M., Hetényi, G., Boschi, L., Jetzer, Ph, Balakrishna, J.: Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophys. J. Int. 191, 78 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Mai, E.: Time, atomic clocks, and relativistic geodesy, DGK, Reihe, A., 124 (Beck, München 2013), URL
  25. 25.
    Falke, St., Lemke, N., Grebing, Ch., Lipphardt, B., Weyers, St., Gerginov, V., Huntemann, N., Hagemann, Ch., Al-Masoudi, A., Häfner, S., Vogt, St., Sterr, U., Lisdat, Ch.: A strontium lattice clock with \(3 \times 10^{-17}\) inaccuracy and its frequency, arXiv:1312.3419 [physics.atom-ph]
  26. 26.
    Droste, S., Ozimek, F., Udem, Th, Predehl, K., Hänsch, T.W., Schnatz, H., Grosche, G., Holzwarth, R.: Optical-frequency transfer over a single-span 1,840 km fiber link. Phys. Rev. Lett. 111, 110801 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Denker, H.: Regional gravity field modeling: theory and practical results. In: Xu, G. (ed.) Sciences of Geodesy-II, Chapter 5, p. 185. Springer, Berlin (2013)CrossRefGoogle Scholar
  28. 28.
    Selig, H., Lämmerzahl, C., Ni, W.-T.: Astrodynamical space test of relativity using optical devices I (ASTROD I)—mission overview. Int. J. Mod. Phys. D 22, 1341003 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Wu, A.-M., Ni, W.-T.: Deployment and simulation of the ASTROD-GW formation. Int. J. Mod. Phys. D 22, 1341005 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Lucchesi, D.M., Peron, R.: Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity. Phys. Rev. Lett. 105, 231103 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Bosi, F., Cella, G., Di Virgilio, A., Ortolan, A., Porzio, A., Solimeno, S., Cerdonio, M., Zendri, J.P., Allegrini, M., Belfi, J., Beverini, N., Bouhadef, B., Carelli, G., Ferrante, I., Maccioni, E., Passaquieti, R., Stefani, F., Ruggiero, M.L., Tartaglia, A., Schreiber, K.U., Gebauer, A., Wells, J.-P.R.: Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Phys. Rev. D 84, 122002 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Müller, J., Biskupek, L., Hofmann, F., Mai, E.: Lunar Laser Ranging and Relativity, in S. Kopeikin (ed.) Frontiers in Relativistic Celestial Mechanics, (deGruyter, in press 2014)Google Scholar
  33. 33.
    Breton, R.P., Kaspi, V.M., Kramer, M., McLaughlin, M.A., Lyutikov, M., Ransom, S.M., Stairs, I.H., Ferdman, R.D., Camilo, F., Possenti, A.: Relativistic spin precession in the double pulsar. Science 321, 104 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Freire, P.C.C., Wex, N., Esposito-Farèse, G., Verbiest, J.P.W., Bailes, M., Jacoby, B.A., Kramer, M., Stairs, I.H., Antoniadis, J., Janssen, G.H.: The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity. MNRAS 423, 3328 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Antoniadis1, J., Freire, P.C.C., Wex, N., Tauris, T.M., Lynch, R.S., van Kerkwijk, M.H., Kramer, M., Bassa, C., Dhillon, V.S., Driebe, T., Hessels, J.W.T., Kaspi, V.M., Kondratiev, V.I., Langer, N., Marsh, T.R., McLaughlin, M.A., Pennucci, T.T., Ransom, S.M., Stairs, I.H., van Leeuwen, J., Verbiest, J.P.W., Whelan, D.G.: A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013)Google Scholar
  36. 36.
    Barker, B.M., O’Connell, R.F.: Nongeodesic motion in general relativity. Gen. Relativ. Gravit. 5, 539 (1974)ADSCrossRefGoogle Scholar
  37. 37.
    Barker, B.M., O’Connell, R.F.: Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 12, 329 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., Keiser, G.M., Silbergleit, A.S., Holmes, T., Kolodziejczak, J., Al-Meshari, M., Mester, J.C., Muhlfelder, B., Solomonik, V.G., Stahl, K., Worden, P.W., Bencze, W., Buchman, S., Clarke, B., Al-Jadaan, A., Al-Jibreen, H., Li, J., Lipa, J.A., Lockhart, J.M., Al-Suwaidan, B., Taber, M., Wang, S.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Zakharov, A.F., de Paolis, F., Ingrosso, G., Nucita, A.A.: Shadows as a tool to evaluate black hole parameters and a dimension of spacetime. N. Astron. Rev. 56, 64 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Borka, D., Jovanoviĉ, P., Borka, Jovanoviĉ V., Zakharov, A.F.: Constraints on \(R^n\) gravity from precession of orbits of S2-like stars. Phys. Rev. D 85, 124004 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ZARMUniversity of BremenBremenGermany
  2. 2.Institute of Geodesy (Institut für Erdmessung IfE)Leibniz Universität HannoverHannoverGermany

Personalised recommendations