Numerical relativity: the role of black holes in gravitational wave physics, astrophysics and high-energy physics

  • Ulrich Sperhake
Review Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10


Black holes play an important role in many areas of physics. Their modeling in the highly-dynamic, strong-field regime of general relativity requires the use of computational methods. We present a review of the main results obtained through numerical relativity simulations of black-hole spacetimes with a particular focus on the most recent developments in the areas of gravitational-wave physics, astrophysics, high-energy collisions, the gauge-gravity duality, and the study of fundamental properties of black holes.


Black holes Numerical relativity Gravitational waves Higher dimensions 



The author thanks Emanuele Berti, Vitor Cardoso, Pau Figueras, Leonardo Gualtieri, Carlos Herdeiro, Luis Lehner, Christian Ott, Frans Pretorius, Harvey Reall, Christian Reisswig, Carlos Sopuerta, Helvi Witek, and Miguel Zilhão for many fruitful discussions. This work was supported by the FP7-PEOPLE-2011-CIG CBHEO Grant No. 293412, the FP7-PEOPLE-2011-IRSES NRHEP Grant No. 295189, the STFC Grant No. ST/I002006/1, the XSEDE Grant No. PHY-090003 by the National Science Foundation, the Cosmos supercomputer infrastructure, part of the DiRAC HPC Facility funded by STFC and BIS, the Centro de Supercomputación de Galicia (CESGA) under Grant No. ICTS-2013-249, and the European Union’s FP7 ERC Starting Grant DyBHo-256667.


  1. 1.
    Aasi, J., et al.: The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Class. Quantum Grav. LIGO-P1300199 (2014). ArXiv:1401.0939 [gr-qc]Google Scholar
  2. 2.
    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). doi: 10.1016/S0370-1573(99)00083-6. Hep-th/9905111ADSMathSciNetGoogle Scholar
  3. 3.
    Ajith, P.: Gravitational-wave data analysis using binary black-hole waveforms. Class. Quantum Grav. 25, 114033 (2008). ArXiv:0712.0343 [gr-qc]ADSGoogle Scholar
  4. 4.
    Ajith, P., Hannam, M., Husa, S., Chen, Y., Brügmann, B., et al.: Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins. Phys. Rev. Lett. 106, 241101 (2011). doi: 10.1103/PhysRevLett.106.241101. ArXiv:0909.2867 [gr-qc]ADSGoogle Scholar
  5. 5.
    Ajith, P., et al.: Phenomenological template family for black-hole coalescence waveforms. Class. Quantum Grav. 24, S689–S700 (2007). doi: 10.1088/0264-9381/24/19/S31. ArXiv:0704.3764 [gr-qc]ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Ajith, P., et al.: A template bank for gravitational waveforms from coalescing binary black holes: I. Non-spinning binaries. Phys. Rev. D 77, 104017 (2008). ArXiv:0710.2335 [gr-qc]ADSMathSciNetGoogle Scholar
  7. 7.
    Ajith, P., et al.: The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Class. Quantum Grav. 29, 124001 (2012). doi: 10.1088/0264-9381/29/12/124001. ArXiv:1201.5319 [gr-qc]ADSGoogle Scholar
  8. 8.
    Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  9. 9.
    Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012). doi: 10.1103/PhysRevD.85.064040. ArXiv:1106.2254 [gr-qc]ADSGoogle Scholar
  10. 10.
    Alic, D., Mösta, P., Rezzolla, L., Zanotti, O., Jaramillo, J.L.: Accurate simulations of binary black-hole mergers in force-free electrodynamics. Astrophys. J. 754, 36 (2012). doi: 10.1088/0004-637X/754/1/36. ArXiv:1204.2226 [gr-qc]ADSGoogle Scholar
  11. 11.
    Anderson, M., Lehner, L., Megevand, M., Neilsen, D.: Post-merger electromagnetic emissions from disks perturbed by binary black holes. Phys. Rev. D 81, 044004 (2010). doi: 10.1103/PhysRevD.81.044004. ArXiv:0910.4969 [astro-ph]ADSGoogle Scholar
  12. 12.
    Ansorg, M., Brügmann, B., Tichy, W.: A single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004). doi: 10.1103/PhysRevD.70.064011. Gr-qc/0404056ADSGoogle Scholar
  13. 13.
    Antoniadis, I.: A Possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990). doi: 10.1016/0370-2693(90)90617-F ADSMathSciNetGoogle Scholar
  14. 14.
    Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998). doi: 10.1016/S0370-2693(98)00860-0. Hep-ph/9804398ADSGoogle Scholar
  15. 15.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). doi: 10.1016/S0370-2693(98)00466-3. Hep-ph/9803315ADSGoogle Scholar
  16. 16.
    Aylott, B., et al.: Status of NINJA: the Numerical INJection Analysis project. Class. Quantum Grav. 26, 114008 (2009). doi: 10.1088/0264-9381/26/11/114008. ArXiv:0905.4227 [gr-qc]ADSGoogle Scholar
  17. 17.
    Aylott, B., et al.: Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Class. Quantum Grav. 26, 165008 (2009). doi: 10.1088/0264-9381/26/16/165008. ArXiv:0901.4399 [gr-qc]ADSGoogle Scholar
  18. 18.
    Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). doi: 10.1103/PhysRevLett.96.111102. Gr-qc/0511103ADSGoogle Scholar
  19. 19.
    Balasubramanian, V., Kraus, P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999). doi: 10.1007/s002200050764. Hep-th/9902121ADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Banks, T., Fischler, W.: A model for high energy scattering in quantum gravity (1999). Report number RU-99–23, UTTP-03-99. Hep-th/9906038Google Scholar
  21. 21.
    Bantilan, H., Pretorius, F., Gubser, S.S.: Simulation of asymptotically AdS5 spacetimes with a generalized harmonic evolution scheme. Phys. Rev. D 85, 084038 (2012). doi: 10.1103/PhysRevD.85.084038. ArXiv:1201.2132 [hep-th]ADSGoogle Scholar
  22. 22.
    Baumgarte, T.W., Shapiro, S.L.: On the numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1998). doi: 10.1103/PhysRevD.59.024007. Gr-qc/9810065ADSMathSciNetGoogle Scholar
  23. 23.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  24. 24.
    Bayona, C.A., Braga, N.R.: Anti-de Sitter boundary in Poincare coordinates. Gen. Relativ. Gravit. 39, 1367–1379 (2007). doi: 10.1007/s10714-007-0446-y. Hep-th/0512182ADSzbMATHGoogle Scholar
  25. 25.
    Bekenstein, J.D.: Extraction of energy and charge from a black hole. Phys. Rev. D 7, 949–953 (1973). doi: 10.1103/PhysRevD.7.949 ADSMathSciNetGoogle Scholar
  26. 26.
    Bekenstein, J.D.: Gravitational-radiation recoil and runaway black holes. Astrophys. J. 183, 657–664 (1973). doi: 10.1086/152255 ADSGoogle Scholar
  27. 27.
    Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M., Sperhake, U.: Numerical simulations of single and binary black holes in scalar-tensor theories: circumventing the no-hair theorem. Phys. Rev. D 87, 124020 (2013). doi: 10.1103/PhysRevD.87.124020. ArXiv:1304.2836 [gr-qc]ADSGoogle Scholar
  28. 28.
    Berti, E., Kesden, M., Sperhake, U.: Effects of post-Newtonian spin alignment on the distribution of black-hole recoils. Phys. Rev. D 85, 124049 (2012). doi: 10.1103/PhysRevD.85.124049. ArXiv:1203.2920 [astro-ph]ADSGoogle Scholar
  29. 29.
    Bizoń, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011). doi: 10.1103/PhysRevLett.107.031102. ArXiv:1104.3702 [gr-qc]ADSGoogle Scholar
  30. 30.
    Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Rel. 9(4) (2006).
  31. 31.
    Blandford, R.D., Znajek, R.L.: Electromagnetic extractions of energy from Kerr black holes. Mon. Not. Roy. Astron. Soc. 179, 433–456 (1977)ADSGoogle Scholar
  32. 32.
    Bode, T., Haas, R., Bogdanović, T., Laguna, P., Shoemaker, D.: Relativistic mergers of supermassive black holes and their electromagnetic signatures. Astrophys. J. 715, 1117–1131 (2010). doi: 10.1088/0004-637X/715/2/1117. ArXiv:0912.0087 [gr-qc]ADSGoogle Scholar
  33. 33.
    Bode, T., et al.: Mergers of supermassive black holes in astrophysical environments. Astrophys. J. 744, 45 (2011). doi: 10.1088/0004-637X/744/1/45. ArXiv:1101.4684 [gr-qc]ADSGoogle Scholar
  34. 34.
    Bogdanović, T., Reynolds, C.S., Miller, M.C.: Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. 661, L147–L150 (2007). Astro-ph/0703054ADSGoogle Scholar
  35. 35.
    Bona, C., Ledvinka, T., Palenzuela, C., Žáček, M.: General-covariant evolution formalism for numerical relativity. Phys. Rev. D 67, 104005 (2003). doi: 10.1103/PhysRevD.67.104005. Gr-qc/0302083ADSMathSciNetGoogle Scholar
  36. 36.
    Bona, C., Palenzuela-Luque, C., Bona-Casas, C.: Elements of Numerical Relativity and Relativistic Hydrodynamics. Springer, London, New York (2009)zbMATHGoogle Scholar
  37. 37.
    Bonnor, W.B., Rotenberg, M.A.: Transport of momentum by gravitational waves: the linear approximation. Proc. R. Soc. Lond. A. 265, 109–116 (1961)ADSMathSciNetGoogle Scholar
  38. 38.
    Brown, D.A., Lundgren, A., O’Shaughnessy, R.: Nonspinning searches for spinning binaries in ground-based detector data: amplitude and mismatch predictions in the constant precession cone approximation. Phys. Rev. D 86, 064020 (2012). doi: 10.1103/PhysRevD.86.064020. ArXiv:1203.6060 [gr-qc]ADSGoogle Scholar
  39. 39.
    Brown, J.D., York Jr, J.W.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 47, 1407–1419 (1993). doi: 10.1103/PhysRevD.47.1407. Gr-qc/9209012ADSMathSciNetGoogle Scholar
  40. 40.
    Buchel, A., Lehner, L., Liebling, S.L.: Scalar collapse in AdS. Phys. Rev. D 86, 123011 (2012). doi: 10.1103/PhysRevD.86.123011. ArXiv:1210.0890 [gr-qc]ADSGoogle Scholar
  41. 41.
    Buchel, A., Liebling, S.L., Lehner, L.: Boson stars in AdS. Phys. Rev. D 87, 123006 (2013). doi: 10.1103/PhysRevD.87.123006. ArXiv:1304.4166 [gr-qc]ADSGoogle Scholar
  42. 42.
    Buonanno, A., Chen, Y., Valisneri, M.: Detection template families for gravitational waves from the final stages of binary-black-hole inspirals: Nonspinning case. Phys. Rev. D 67, 024016 (2003). [Erratum-ibid. 74, 029903 (2006)] gr-qc/0205122.
  43. 43.
    Buonanno, A., Damour, T.: Effective one-body aproach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999)ADSMathSciNetGoogle Scholar
  44. 44.
    Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000)ADSGoogle Scholar
  45. 45.
    Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). doi: 10.1103/PhysRevLett.96.111101. Gr-qc/0511048ADSGoogle Scholar
  46. 46.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: the orbital hang up. Phys. Rev. D 74, 041501 (2006). doi: 10.1103/PhysRevD.74.041501. Gr-qc/0604012ADSMathSciNetGoogle Scholar
  47. 47.
    Campanelli, M., Lousto, C.O., Zlochower, Y., Merritt, D.: Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. 659, L5–L8 (2007). doi: 10.1086/516712. Gr-qc/0701164ADSGoogle Scholar
  48. 48.
    Campanelli, M., Lousto, C.O., Zlochower, Y., Merritt, D.: Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007). Gr-qc/0702133ADSGoogle Scholar
  49. 49.
    Cao, Z., Hilditch, D.: Numerical stability of the Z4c formulation of general relativity. Phys. Rev. D 85, 124032 (2012). doi: 10.1103/PhysRevD.85.124032. ArXiv:1111.2177 [gr-qc]ADSGoogle Scholar
  50. 50.
    Centrella, J.M., Baker, J.G., Kelly, B.J., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010). doi: 10.1103/RevModPhys.82.3069. ArXiv:1010.5260 [gr-qc]Google Scholar
  51. 51.
    Chang, P., Strubbe, L.E., Menou, K., Quataert, E.: Fossil gas and the electromagnetic precursor of supermassive binary black hole mergers. MNRAS 407, 2007–2016 (2010). ArXiv:0906.0825 [astro-ph]ADSGoogle Scholar
  52. 52.
    Chesler, P.M., Yaffe, L.G.: Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 102, 211601 (2009). doi: 10.1103/PhysRevLett.102.211601. ArXiv:0812.2053 [hep-th]ADSMathSciNetGoogle Scholar
  53. 53.
    Chesler, P.M., Yaffe, L.G.: Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory. Phys. Rev. D 82, 026006 (2010). doi: 10.1103/PhysRevD.82.026006. ArXiv:0906.4426 [hep-th]ADSGoogle Scholar
  54. 54.
    Chesler, P.M., Yaffe, L.G.: Holography and colliding gravitational shock waves in asymptotically \(AdS_5\) spacetime. Phys. Rev. Lett. 106, 021601 (2011). doi:  10.1103/PhysRevLett.106.021601. ArXiv:1011.3562 [hep-th]ADSGoogle Scholar
  55. 55.
    Chesler, P.M., Yaffe, L.G.: Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes (2013). ArXiv:1309.1439 [hep-th]Google Scholar
  56. 56.
    Choptuik, M.W.: Universality and scaling in graviational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993). doi: 10.1103/PhysRevLett.70.9 ADSGoogle Scholar
  57. 57.
    Choptuik, M.W., Pretorius, F.: Ultra relativistic particle collisions. Phys. Rev. Lett. 104, 111101 (2010). doi: 10.1103/PhysRevLett.104.111101. ArXiv:0908.1780 [gr-qc]ADSGoogle Scholar
  58. 58.
    Dai, D.C., Starkman, G., Stojkovic, D., Issever, C., Rizvi, E., et al.: BlackMax: a black-hole event generator with rotation, recoil, split branes, and brane tension. Phys. Rev. D 77, 076007 (2008). doi: 10.1103/PhysRevD.77.076007. ArXiv:0711.3012 [hep-ph]ADSGoogle Scholar
  59. 59.
    Damour, T., Nagar, A.: Comparing effective-one-body gravitational waveforms to accurate numerical data. Phys. Rev. D 77, 024043 (2008). ArXiv:0711.2628 [gr-qc]ADSGoogle Scholar
  60. 60.
    Damour, T., Nagar, A., Hannam, M.D., Husa, S., Brügmann, B.: Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Phys. Rev. D 78, 044039 (2008). ArXiv:[0803.3162]ADSGoogle Scholar
  61. 61.
    Damour, T., Trias, M., Nagar, A.: Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries. Phys. Rev. D 83, 024006 (2011). doi: 10.1103/PhysRevD.83.024006. ArXiv:1009.5998 [gr-qc]ADSGoogle Scholar
  62. 62.
    Dias, O.J.C., Horowitz, G.T., Marolf, D., Santos, J.E.: On the nonlinear stability of asymptotically anti-de sitter solutions. Class. Quantum Grav. 29, 235019 (2012). doi: 10.1088/0264-9381/29/23/235019. ArXiv:1208.5772 [gr-qc]ADSMathSciNetGoogle Scholar
  63. 63.
    Dimopoulos, S., Landsberg, G.: Black Holes at the LHC. Phys. Rev. Lett. 87, 161602 (2001). doi: 10.1103/PhysRevLett.87.161602. Hep-th/0106295ADSGoogle Scholar
  64. 64.
    Dolan, S.R.: Superradiant instabilities of rotating black holes in the time domain. Phys. Rev. D 87, 124026 (2013). doi: 10.1103/PhysRevD.87.124026. ArXiv:1212.1477 [gr-qc]ADSGoogle Scholar
  65. 65.
    Drude, P.: Zur elektronentheorie der metalle. Annalen der Physik 306, 566 (1900). doi: 10.1002/andp.19003060312 ADSGoogle Scholar
  66. 66.
    Drude, P.: Zur elektronentheorie der metalle: II. Teil. galvanomagnetische und thermomagnetische effekte. Annalen der Physik 308, 369 (1900). doi: 10.1002/andp.19003081102 ADSGoogle Scholar
  67. 67.
    Eardley, D.M., Giddings, S.B.: Classical black hole production in high-energy collisions. Phys. Rev. D 66, 044011 (2002). doi: 10.1103/PhysRevD.66.044011. Gr-qc/0201034ADSMathSciNetGoogle Scholar
  68. 68.
    East, W.E., Pretorius, F.: Ultrarelativistic black hole formation. Phys. Rev. Lett. 110, 101101 (2013). doi: 10.1103/PhysRevLett.110.101101. ArXiv:1210.0443 [gr-qc]ADSGoogle Scholar
  69. 69.
    Emparan, R., Reall, H.S.: Black holes in higher dimensions. Living Rev. Rel. 11(6) (2008).
  70. 70.
    Farris, B.D., Gold, R., Paschalidis, V., Etienne, Z.B., Shapiro, S.L.: Binary black hole mergers in magnetized disks: simulations in full general relativity. Phys. Rev. Lett. 109, 221102 (2012). doi: 10.1103/PhysRevLett.109.221102. ArXiv:1207.3354 [astro-ph]ADSGoogle Scholar
  71. 71.
    Farris, B.D., Liu, Y.T., Shapiro, S.L.: Binary black hole mergers in gaseous environments: ’Binary Bondi’ and ’Binary Bondi-Hoyle-Lyttleton’ accretion. Phys. Rev. D 81, 084008 (2010). doi: 10.1103/PhysRevD.81.084008. ArXiv:0912.2096 [asttro-ph]ADSGoogle Scholar
  72. 72.
    Finn, L.S.: Detection, measurement and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992). Gr-qc/9209010ADSGoogle Scholar
  73. 73.
    Fitchett, M.J.: The influence of gravitational wave momentum losses on the centre of mass motion of a newtonian binary system. MNRAS 203, 1049–1062 (1983)ADSzbMATHGoogle Scholar
  74. 74.
    Frost, J.A., Gaunt, J.R., Sampaio, M.O.P., Casals, M., Dolan, S.R., et al.: Phenomenology of Production and Decay of Spinning Extra- Dimensional Black Holes at Hadron Colliders. JHEP 10, 014 (2009). doi: 10.1088/1126-6708/2009/10/014. ArXiv:0904.0979 [hep-th]ADSGoogle Scholar
  75. 75.
    Garfinkle, D.: Harmonic coordinate method for simulating generic singularities. Phys. Rev. D 65, 044029 (2002). doi: 10.1103/PhysRevD.65.044029. Gr-qc/0110013ADSMathSciNetGoogle Scholar
  76. 76.
    Giddings, S.B., Thomas, S.: High energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65, 056010 (2002). doi: 10.1103/PhysRevD.65.056010. Hep-ph/0106219ADSGoogle Scholar
  77. 77.
    González, J.A., Hannam, M.D., Sperhake, U., Brügmann, B., Husa, S.: Supermassive kicks for spinning black holes. Phys. Rev. Lett. 98, 231101 (2007). doi: 10.1103/PhysRevLett.98.231101. Gr-qc/0702052ADSGoogle Scholar
  78. 78.
    González, J.A., Sperhake, U., Brügmann, B., Hannam, M.D., Husa, S.: The maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007). doi: 10.1103/PhysRevLett.98.091101. Gr-qc/0610154ADSMathSciNetGoogle Scholar
  79. 79.
    Gregory, R., Laflamme, R.: Black strings and p-branes are unstable. Phys. Rev. Lett. 70, 2837–2840 (1993). doi: 10.1103/PhysRevLett.70.2837. Hep-th/9301052ADSzbMATHMathSciNetGoogle Scholar
  80. 80.
    Gregory, R., Laflamme, R.: The Instability of charged black strings and p-branes. Nucl. Phys. B 428, 399–434 (1994). doi: 10.1016/0550-3213(94)90206-2. Hep-th/9404071ADSzbMATHMathSciNetGoogle Scholar
  81. 81.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998). doi: 10.1016/S0370-2693(98)00377-3. Hep-th/9802109ADSMathSciNetGoogle Scholar
  82. 82.
    Guedes, J., Madau, P., Mayer, L., Callegari, S.: Recoiling massive black holes in gas-rich galaxy mergers. Astrophys. J. 729, 125 (2011). ArXiv:1008.2032 [astro-ph]ADSGoogle Scholar
  83. 83.
    Gundlach, C., Calabrese, G., Hinder, I., Martín-García, J.M.: Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767–3773 (2005). doi: 10.1088/0264-9381/22/17/025 zbMATHGoogle Scholar
  84. 84.
    Haiman, Z., Loeb, A.: What is the highest plausible redshift of luminous quasars? Astrophys. J. 552, 459–463 (2001)ADSGoogle Scholar
  85. 85.
    Hannam, M., et al.: Twist and shout: a simple model of complete precessing black-hole-binary gravitational waveforms (2013). ArXiv:1308.3271 [gr-qc]Google Scholar
  86. 86.
    de Haro, S., Solodukhin, S.N., Skenderis, K.: Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). doi: 10.1007/s002200100381. Hep-th/0002230ADSzbMATHGoogle Scholar
  87. 87.
    Harris, C.M., Richardson, P., Webber, B.R.: CHARYBDIS: a black hole event generator. JHEP 0308, 033 (2003). Hep-ph/0307305ADSGoogle Scholar
  88. 88.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)zbMATHGoogle Scholar
  89. 89.
    Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M., Yunes, N.: Late inspiral and merger of binary black holes in scalar-tensor theories of gravity (2011). ArXiv:1112.3928 [gr-qc]Google Scholar
  90. 90.
    Heller, M.P., Janik, R.A., Witaszczyk, P.: A numerical relativity approach to the initial value problem in asymptotically anti-de Sitter spacetime for plasma thermalization—an ADM formulation. Phys. Rev. D 85, 126002 (2012). doi: 10.1103/PhysRevD.85.126002. ArXiv:1203.0755 [hep-th]ADSGoogle Scholar
  91. 91.
    Heller, M.P., Janik, R.A., Witaszczyk, P.: The characteristics of thermalization of boost-invariant plasma from holography. Phys. Rev. Lett. 108, 201602 (2012). doi: 10.1103/PhysRevLett.108.201602. ArXiv:1103.3452 [hep-th]ADSGoogle Scholar
  92. 92.
    Heller, M.P., Mateos, D., van der Schee, W., Trancanelli, D.: Strong coupling isotropization of non-abelian plasmas simplified. Phys. Rev. Lett. 108, 191601 (2012). doi: 10.1103/PhysRevLett.108.191601. ArXiv:1202.0981 [hep-th]ADSGoogle Scholar
  93. 93.
    Hemberger, D.A., Lovelace, G., Loredo, T.J., Kidder, L.E., Scheel, M.A., Szilágyi, B., Taylor, N.W., Teukolsky, S.A.: Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or anti-aligned spins. Phys. Rev. D 88, 064014 (2013). doi: 10.1103/PhysRevD.88.064014. ArXiv:1305.5991 [gr-qc]ADSGoogle Scholar
  94. 94.
    Hilditch, D., Bernuzzi, S., Thierfelder, M., Cao, Z., Tichy, W., Brügmann, B.: Compact binary evolutions with the Z4c formulation. Phys. Rev. D 88, 084057 (2013). doi: 10.1103/PhysRevD.88.084057. ArXiv:1212.2901 [gr-qc]ADSGoogle Scholar
  95. 95.
    Hinder, I., et al.: Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR collaboration . Class. Quant. Grav. 31, 025012 (2014). ArXiv:1307.5307 [gr-qc]Google Scholar
  96. 96.
    Horbatsch, M.W., Burgess, C.P.: Cosmic black-hole hair growth and quasar OJ287. J. Cosmol. Astropart. Phys. 1205, 010 (2012). doi: 10.1088/1475-7516/2012/05/010. ArXiv:1111.4009 [gr-qc]ADSGoogle Scholar
  97. 97.
    Horowitz, G.T., Hubeny, V.E.: Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000). doi: 10.1103/PhysRevD.62.024027. Hep-th/9909056ADSMathSciNetGoogle Scholar
  98. 98.
    Horowitz, G.T., Santos, J.E., Tong, D.: Further evidence for lattice-induced scaling. JHEP 1211, 102 (2012). doi: 10.1007/JHEP11(2012)102. ArXiv:1209.1098 [hep-th]
  99. 99.
    Horowitz, G.T., Santos, J.E., Tong, D.: Optical conductivity with holographic lattices. JHEP 1207, 168 (2012). doi: 10.1007/JHEP07(2012)168. ArXiv:1204.0519 [hep-th]
  100. 100.
    Jałmużna, J., Rostworowski, A., Bizoń, P.: A Comment on AdS collapse of a scalar field in higher dimensions. Phys. Rev. D 84, 085021 (2011). doi: 10.1103/PhysRevD.84.085021. ArXiv:1108.4539 [gr-qc]ADSGoogle Scholar
  101. 101.
    Kanti, P.: Black holes at the LHC. Lect. Notes Phys. 769, 387–423 (2009). doi: 10.1007/978-3-540-88460-6_10. ArXiv:0802.2218 [hep-th]ADSMathSciNetGoogle Scholar
  102. 102.
    Kesden, M., Sperhake, U., Berti, E.: Final spins from the merger of precessing binary black holes. Phys. Rev. D 81, 084054 (2010). ArXiv:1002.2643 [astro-ph]ADSGoogle Scholar
  103. 103.
    Kesden, M., Sperhake, U., Berti, E.: Relativistic suppression of black hole recoils. Astrophys. J. 715, 1006–1011 (2010). ArXiv:1003.4993 [astro-ph]ADSGoogle Scholar
  104. 104.
    Klebanov, I.R.: TASI lectures: introduction to the AdS/CFT correspondence. pp. 615–650 (2000). Hep-th/0009139Google Scholar
  105. 105.
    Komossa, S., Zhou, H., Lu, H.: A recoiling supermassive black hole in the quasar SDSSJ092712.65+294344.0? Astrophys. J. 678, L81 (2008). ArXiv:0804.4585 [astro-ph]ADSGoogle Scholar
  106. 106.
    Lehner, L.: Numerical relatvity: a review. Class. Quantum Grav. 18, R25–R86 (2001). doi: 10.1088/0264-9381/18/17/202. Gr-qc/0106072ADSzbMATHMathSciNetGoogle Scholar
  107. 107.
    Lehner, L., Pretorius, F.: Black strings, low viscosity fluids, and violation of cosmic censorship. Phys. Rev. Lett. 105, 101102 (2010). doi: 10.1103/PhysRevLett.105.101102. ArXiv:1006.5960 [hep-th]ADSMathSciNetGoogle Scholar
  108. 108.
    Li, Y., et al.: Formation of \(z\tilde{\;}6\) quasars from hierarchical galaxy mergers. Astrophys. J. 665, 187–208 (2007). Astro-ph/0608190ADSGoogle Scholar
  109. 109.
    Lindblom, L.: Use and abuse of the model waveform accuracy standards. Phys. Rev. D 80, 064019 (2009). ArXiv:0907.0457 [gr-qc]ADSGoogle Scholar
  110. 110.
    Lindblom, L., Baker, J.G., Owen, B.J.: Improved time-domain accuracy standards for model gravitational waveforms. Phys. Rev. D 82, 084020 (2010). ArXiv:1008.1803 [gr-qc]ADSGoogle Scholar
  111. 111.
    MacDonald, I., Nissanke, S., Pfeiffer, H.P.: Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors. Class. Quantum Grav. 28, 134002 (2011). doi: 10.1088/0264-9381/28/13/134002. ArXiv:1102.5128 [gr-qc]ADSGoogle Scholar
  112. 112.
    Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S.M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., Lauer, T.: The demography of massive dark objects in galaxy centers. Astron. J 115, 2285–2305 (1998). Astro-ph/9708072ADSGoogle Scholar
  113. 113.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1997). Hep-th/9711200ADSMathSciNetGoogle Scholar
  114. 114.
    Maliborski, M., Rostworowski, A.: Time-periodic solutions in Einstein AdS—massless scalar field system. Phys. Rev. Lett. 111, 051102 (2013). doi: 10.1103/PhysRevLett.111.051102. ArXiv:1303.3186 [gr-qc]ADSGoogle Scholar
  115. 115.
    Megevand, M.: Perturbed disks get shocked. Binary black hole merger effects on accretion disks. Phys. Rev. D80, 024012 (2009). doi: 10.1103/PhysRevD.80.024012. ArXiv:0905.3390 [astro-ph]ADSGoogle Scholar
  116. 116.
    Merritt, D., Milosavljević, M., Favata, M., Hughes, S., Holz, D.: Consequences of gravitational radiation recoil. Astrophys. J. 607, L9–L12 (2004). Astro-ph/0402057ADSGoogle Scholar
  117. 117.
    Mösta, P., et al.: Vacuum electromagnetic counterparts of binary black-hole mergers. Phys. Rev. D 81, 064017 (2010). doi: 10.1103/PhysRevD.81.064017. ArXiv:0912.2330 [gr-qc]ADSGoogle Scholar
  118. 118.
    Mroué, A.H., et al.: A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy. Phys. Rev. Lett. 111, 241104 (2013). ArXiv:1304.6077 [gr-qc]Google Scholar
  119. 119.
    Nastase, H.: Introduction to AdS-CFT (2007). Report number TIT-HEP-578. ArXiv:0712.0689 [hep-th].Google Scholar
  120. 120.
    Okawa, H., Nakao, K.I., Shibata, M.: Is super-Planckian physics visible? Scattering of black holes in 5 dimensions. Phys. Rev. D 83, 121501 (2011). ArXiv:1105.3331 [gr-qc]ADSGoogle Scholar
  121. 121.
    Palenzuela, C., Anderson, M., Lehner, L., Liebling, S.L., Neilsen, D.: Stirring, not shaking: binary black holes’ effects on electromagnetic fields. Phys. Rev. Lett. 103, 081101 (2009). doi: 10.1103/PhysRevLett.103.081101. ArXiv:0905.1121 [astro-ph]ADSGoogle Scholar
  122. 122.
    Palenzuela, C., Garrett, T., Lehner, L., Liebling, S.L.: Magnetospheres of black hole systems in force-free plasma. Phys. Rev. D 82, 044045 (2010). doi: 10.1103/PhysRevD.82.044045. ArXiv:1007.1198 [gr-qc]ADSGoogle Scholar
  123. 123.
    Palenzuela, C., Lehner, L., Liebling, S.L.: Dual jets from binary black holes. Science 329, 927 (2010). doi: 10.1126/science.1191766. ArXiv:1005.1067 [astro-ph]ADSGoogle Scholar
  124. 124.
    Palenzuela, C., Lehner, L., Yoshida, S.: Understanding possible electromagnetic counterparts to loud gravitational wave events: binary black hole effects on electromagnetic fields. Phys. Rev. D 81, 084007 (2010). doi: 10.1103/PhysRevD.81.084007. ArXiv:0911.3889 [gr-qc]ADSGoogle Scholar
  125. 125.
    Pan Yi. and Buonanno, A., Boyle, M., Buchman, L.T., Kidder L, E., Pfeiffer, H.P., Scheel, M.A.: Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Phys. Rev. D 84, 124052. doi: 10.1103/PhysRevD.84.124052. ArXiv:1106.1021 [gr-qc]
  126. 126.
    Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of nonprecessing, spinning, equal-mass black holes. Phys. Rev. D 81, 084041 (2010). doi: 10.1103/PhysRevD.81.084041. ArXiv:0912.3466 [gr-qc]ADSGoogle Scholar
  127. 127.
    Pani, P., Cardoso, V., Gualtieri, L., Berti, E., Ishibashi, A.: Black hole bombs and photon mass bounds. Phys. Rev. Lett. 109, 131102 (2012). doi: 10.1103/PhysRevLett.109.131102. ArXiv:1209.0465 [gr-qc]ADSGoogle Scholar
  128. 128.
    Pekowsky, L., O’Shaughnessy, R., Healy, J., Shoemaker, D.: Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame. Phys. Rev. D 88, 024040 (2013). doi: 10.1103/PhysRevD.88.024040. ArXiv:1304.3176 [gr-qc]ADSGoogle Scholar
  129. 129.
    Peres, A.: Classical radiation recoil. Phys. Rev. 128, 2471–2475 (1962)ADSzbMATHMathSciNetGoogle Scholar
  130. 130.
    Peters, P.C.: Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232 (1964)ADSGoogle Scholar
  131. 131.
    Pfeiffer, H.P.: Numerical simulations of compact object binaries. Class. Quantum Grav. 29, 124004 (2012). doi: 10.1088/0264-9381/29/12/124004. ArXiv:1203.5166 [gr-qc]ADSGoogle Scholar
  132. 132.
    Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). doi: 10.1103/PhysRevLett.95.121101. Gr-qc/0507014ADSMathSciNetGoogle Scholar
  133. 133.
    Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quantum Grav. 22, 425–452 (2005). doi: 10.1088/0264-9381/22/2/014. Gr-qc/0407110ADSzbMATHMathSciNetGoogle Scholar
  134. 134.
    Pretorius, F.: Binary black hole coalescence. In: Colpi, M., et al. (ed.) Physics of relativistic objects in compact binaries: from birth to coalescence. Springer, New York (2009). ArXiv:0710.1338 [gr-qc]Google Scholar
  135. 135.
    Pretorius, F., Khurana, D.: Black hole mergers and unstable circular orbits. Class. Quantum Grav. 24, S83–S108 (2007). doi: 10.1088/0264-9381/24/12/S07. Gr-qc/0702084ADSzbMATHMathSciNetGoogle Scholar
  136. 136.
    Pürrer, M., Hannam, M., Ajith, P., Husa, S.: Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms. Phys. Rev. D 88, 064007 (2013). doi: 10.1103/PhysRevD.88.064007. ArXiv:1306.2320 [gr-qc]ADSGoogle Scholar
  137. 137.
    Randall, L., Sundrum, R.: A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). doi: 10.1103/PhysRevLett.83.3370. Hep-ph/9905221ADSzbMATHMathSciNetGoogle Scholar
  138. 138.
    Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999). doi: 10.1103/PhysRevLett.83.4690. Hep-th/9906064ADSzbMATHMathSciNetGoogle Scholar
  139. 139.
    Rees, M.J.: Accretion and the quasar phenomenon. Phys. Scr. 17, 193–200 (1978)ADSGoogle Scholar
  140. 140.
    Rinne, O., Lindblom, L., Scheel, M.A.: Testing outer boundary treatments for the Einstein equations. Class. Quantum Grav. 24, 4053–4078 (2007). doi: 10.1088/0264-9381/24/16/006. ArXiv:0704.0782 [gr-qc]ADSzbMATHMathSciNetGoogle Scholar
  141. 141.
    Ruiz, M., Rinne, O., Sarbach, O.: Outer boundary conditions for Einstein’s field equations in harmonic coordinates. Class. Quantum Grav. 24, 6349–6378 (2007). doi: 10.1088/0264-9381/24/24/012. ArXiv:0707.2797 [gr-qc]ADSzbMATHMathSciNetGoogle Scholar
  142. 142.
    Santamaria, L.: L.: Matching post-newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries. Phys. Rev. D 82, 064016 (2010). ArXiv:1005.3306ADSGoogle Scholar
  143. 143.
    Sasaki, M., Tagoshi, H.: Analytic black hole perturbation approach to gravitational radiation. Living Rev. Rel. 6(6) (2003).
  144. 144.
    Schnittman, J.D.: Spin-orbit resonance and the evolution of compact binary systems. Phys. Rev. D 70, 124020 (2004). Astro-ph/0409174ADSGoogle Scholar
  145. 145.
    Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: harmonic slicing case. Phys. Rev. D 52, 5428–5444 (1995). doi: 10.1103/PhysRevD.52.5428 ADSzbMATHMathSciNetGoogle Scholar
  146. 146.
    Shibata, M., Okawa, H., Yamamoto, T.: High-velocity collisions of two black holes. Phys. Rev. D 78, 101501(R) (2008). doi: 10.1103/PhysRevD.78.101501. ArXiv:0810.4735 [gr-qc]ADSGoogle Scholar
  147. 147.
    Shibata, M., Yoshino, H.: Bar-mode instability of rapidly spinning black hole in higher dimensions: numerical simulation in general relativity. Phys. Rev. D 81, 104035 (2010). doi: 10.1103/PhysRevD.81.104035. ArXiv:1004.4970 [gr-qc]
  148. 148.
    Shibata, M., Yoshino, H.: Nonaxisymmetric instability of rapidly rotating black hole in five dimensions. Phys. Rev. D 81, 021501 (2010). doi: 10.1103/PhysRevD.81.021501. ArXiv:0912.3606 [gr-qc]ADSGoogle Scholar
  149. 149.
    Sorkin, E., Oren, Y.: On Choptuik’s scaling in higher dimensions. Phys. Rev. D 71, 124005 (2005). doi: 10.1103/PhysRevD.71.124005. Hep-th/0502034ADSGoogle Scholar
  150. 150.
    Sperhake, U.: Numerical relativity in higher dimensions. Int. J. Mod. Phys. D 22, 1330005 (2013). doi: 10.1142/S021827181330005X. ArXiv:1301.3772 [gr-qc]ADSMathSciNetGoogle Scholar
  151. 151.
    Sperhake, U., Berti, E., Cardoso, V.: Numerical simulations of black-hole binaries and gravitational wave emission. C. R. Phys. 14, 306–317 (2013). doi: 10.1016/j.crhy.2013.01.004. ArXiv:1107.2819 [gr-qc]ADSGoogle Scholar
  152. 152.
    Sperhake, U., Berti, E., Cardoso, V., Pretorius, F.: Universality, maximum radiation and absorption in high-energy collisions of black holes with spin. Phys. Rev. Lett. 111, 041101 (2013). doi: 10.1103/PhysRevLett.111.041101. ArXiv:1211.6114 [gr-qc]ADSGoogle Scholar
  153. 153.
    Sperhake, U., Brügmann, B., Müller, D., Sopuerta, C.F.: 11-orbit inspiral of a mass ratio 4:1 black-hole binary. Class. Quantum Grav. 28, 134004 (2011). doi: 10.1088/0264-9381/28/13/134004. ArXiv:1012.3173 [gr-qc]
  154. 154.
    Sperhake, U., Cardoso, V., Pretorius, F., Berti, E., González, J.A.: The high-energy collision of two black holes. Phys. Rev. Lett. 101, 161101 (2008). doi: 10.1103/PhysRevLett.101.161101. ArXiv:0806.1738 [gr-qc]ADSGoogle Scholar
  155. 155.
    Sperhake, U., Cardoso, V., Pretorius, F., Berti, E., Hinderer, T., Yunes, N.: Cross section, final spin and zoom-whirl behavior in high-energy black hole collisions. Phys. Rev. Lett. 103, 131102 (2009). doi: 10.1103/PhysRevLett.103.131102. ArXiv:0907.1252 [gr-qc]ADSGoogle Scholar
  156. 156.
    Sturani, R., et al.: Complete phenomenological gravitational waveforms from spinning coalescing binaries. J. Phys. Conf. Ser. 243, 012007 (2010). ArXiv:1005.0551 [gr-qc]ADSGoogle Scholar
  157. 157.
    Taracchini, A.: A.: A prototype effective-one-body model for non-precessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 024011 (2012). doi: 10.1103/PhysRevD.86.024011. ArXiv:1202.0790 [gr-qc]ADSGoogle Scholar
  158. 158.
    Taracchini, A, et al.: Effective-one-body model for black-hole binaries with generic mass ratios and spins (2013). ArXiv:1311.2544 [gr-qc]Google Scholar
  159. 159.
    van Paradijs, J.: Gamma-ray Bursts. In: American Astronomical Society Meeting Abstracts. Bulletin of the American Astronomical Society, vol. 30, pp. 1291-+ (1998). ArXiv:astro-ph/9802177.Google Scholar
  160. 160.
    Volonteri, M., Gültekin, K., Dotti, M.: Gravitational recoil: effects on massive black hole occupation fraction over cosmic time. MNRAS 404, 2143–2150 (2010). ArXiv:1001.1743 [astro-ph]ADSGoogle Scholar
  161. 161.
    Witek, H., Cardoso, V., Gualtieri, L., Herdeiro, C., Sperhake, U., Zilhão, M.: Head-on collisions of unequal mass black holes in \(d=5\) dimensions. Phys. Rev. D 83, 044017 (2011). ArXiv:1011.0742 [gr-qc]ADSGoogle Scholar
  162. 162.
    Witek, H., Cardoso, V., Ishibashi, A., Sperhake, U.: Superradiant instabilities in astrophysical systems. Phys. Rev. D 87, 043513 (2013). doi: 10.1103/PhysRevD.87.043513. ArXiv:1212.0551 [gr-qc]ADSGoogle Scholar
  163. 163.
    Witek, H., Zilhão, M., Gualtieri, L., Cardoso, V., Herdeiro, C., Nerozzi, A., Sperhake, U.: Numerical relativity for D dimensional space-times: head-on collisions of black holes and gravitational wave extraction. Phys. Rev. D 82, 104014 (2010). doi: 10.1103/PhysRevD.82.104014. ArXiv:1006.3081 [gr-qc]ADSGoogle Scholar
  164. 164.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). Hep-th/9802150ADSzbMATHMathSciNetGoogle Scholar
  165. 165.
    Yoshino, H., Shibata, M.: Higher-dimensional numerical relativity: current status. Prog. Theor. Phys. Suppl. 189, 269–310 (2011). doi: 10.1143/PTPS.189.269 ADSzbMATHGoogle Scholar
  166. 166.
    Zel’dovich, Y.B.: Pis’ma. Zh. Eksp. Teor. Fiz. 14, 270 (1971)Google Scholar
  167. 167.
    Zel’dovich, Y.B.: Zh. Eksp. Teor. Fiz 62, 2076 (1972)Google Scholar
  168. 168.
    Zilhão, M.: New frontiers in Numerical Relativity. Ph.D. thesis, University of Porto (2012). ArXiv:1301.1509 [gr-qc]Google Scholar
  169. 169.
    Zilhão, M., Ansorg, M., Cardoso, V., Gualtieri, L., Herdeiro, C., Sperhake, U., Witek, H.: Higher-dimensional puncture initial data. Phys. Rev. D 84, 084039 (2011). ArXiv:1109.2149 [gr-qc]ADSGoogle Scholar
  170. 170.
    Zilhao, M., Cardoso, V., Gualtieri, L., Herdeiro, C., Sperhake, U., Witek, H.: Dynamics of black holes in de Sitter spacetimes. Phys. Rev. D 85, 104039 (2012). doi: 10.1103/PhysRevD.85.104039. ArXiv:1204.2019 [gr-qc]ADSGoogle Scholar
  171. 171.
    Zilhao, M., Cardoso, V., Herdeiro, C., Lehner, L., Sperhake, U.: Collisions of charged black holes. Phys. Rev. D 85, 124062 (2012). doi: 10.1103/PhysRevD.85.124062. ArXiv:1205.1063 [gr-qc].
  172. 172.
    Zilhão, M., Cardoso, V., Herdeiro, C., Lehner, L., Sperhake, U.: Collisions of oppositely charged black holes. Phys. Rev. D 89, 044008 (2014). ArXiv:1311.6483 [gr-qc]Google Scholar
  173. 173.
    Zilhão, M., Witek, H., Sperhake, U., Cardoso, V., Gualtieri, L., Herdeiro, C., Nerozzi, A.: Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests. Phys. Rev. D 81, 084052 (2010). doi: 10.1103/PhysRevD.81.084052. ArXiv:1001.2302 [gr-qc]ADSGoogle Scholar
  174. 174.
  175. 175.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridge UK

Personalised recommendations