Advertisement

Canonical structure of tetrad bimetric gravity

  • Sergei AlexandrovEmail author
Editor's Choice (Research Article)

Abstract

We perform the complete canonical analysis of the tetrad formulation of bimetric gravity and confirm that it is ghost-free describing the seven degrees of freedom of a massless and a massive gravitons. In particular, we find explicit expressions for secondary constraints, one of which is responsible for removing the ghost, whereas the other ensures the equivalence with the metric formulation. Both of them have a remarkably simple form and, being combined with conditions on Lagrange multipliers, can be written in a covariant way.

Keywords

Bimetric gravity Massive gravity Tetrad formalism  Canonical analysis 

Notes

Acknowledgments

The author is grateful to Josef Klusoň for valuable discussions. This work is supported by contract ANR-09-BLAN-0041.

References

  1. 1.
    Salam, A., Strathdee, J.: Nonlinear realizations. 1: the role of Goldstone bosons. Phys. Rev. 184, 1750–1759 (1969)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Isham, C., Salam, A., Strathdee, J.: Spontaneous breakdown of conformal symmetry. Phys. Lett. B31, 300–302 (1970)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A173, 211–232 (1939)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boulware, D., Deser, S.: Can gravitation have a finite range? Phys. Rev. D6, 3368–3382 (1972)ADSGoogle Scholar
  5. 5.
    de Rham, C., Gabadadze, G.: Generalization of the Fierz–Pauli action. Phys. Rev. D82, 044020 (2010). [arXiv:1007.0443]ADSGoogle Scholar
  6. 6.
    de Rham, C., Gabadadze, G., Tolley, A.J.: Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011). [arXiv:1011.1232]ADSCrossRefGoogle Scholar
  7. 7.
    de Rham, C., Gabadadze, G., Tolley, A.J.: Ghost free massive gravity in the Stückelberg language. Phys. Lett. B711, 190–195 (2012). [arXiv:1107.3820]ADSCrossRefGoogle Scholar
  8. 8.
    Hassan, S., Rosen, R.A.: Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity. JHEP 1204, 123 (2012). [arXiv:1111.2070]ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mirbabayi, M.: A proof of ghost freedom in de Rham–Gabadadze–Tolley massive gravity. Phys. Rev. D86, 084006 (2012). [arXiv:1112.1435]ADSGoogle Scholar
  10. 10.
    Hassan, S., Schmidt-May, A., von Strauss, M.: Proof of consistency of nonlinear massive gravity in the Stúckelberg formulation. Phys. Lett. B715, 335–339 (2012). [arXiv:1203.5283]ADSCrossRefGoogle Scholar
  11. 11.
    Hassan, S., Rosen, R.A., Schmidt-May, A.: Ghost-free massive gravity with a general reference metric. JHEP 1202, 026 (2012). [arXiv:1109.3230]ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hassan, S., Rosen, R.A.: Bimetric gravity from ghost-free massive gravity. JHEP 1202, 126 (2012). [arXiv:1109.3515]ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hinterbichler, K.: Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671–710 (2012). [arXiv:1105.3735]ADSCrossRefGoogle Scholar
  14. 14.
    Hinterbichler, K., Rosen, R.A.: Interacting spin-2 fields. JHEP 1207, 047 (2012). [arXiv:1203.5783]ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chamseddine, A.H., Mukhanov, V.: Massive gravity simplified: a quadratic action. JHEP 1108, 091 (2011). [arXiv:1106.5868]ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Deffayet, C., Mourad, J., Zahariade, G.: Covariant constraints in ghost free massive gravity. JCAP 1301, 032 (2013). [arXiv:1207.6338]ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Comelli, D., Nesti, F., Pilo, L.: Massive gravity: a general analysis (2013). [arXiv:1305.0236]Google Scholar
  18. 18.
    Kluson, J.: Is bimetric gravity really ghost free? (2013) [arXiv:1301.3296]Google Scholar
  19. 19.
    Chamseddine, A.H., Mukhanov, V.: Hidden ghost in massive gravity. JHEP 1303, 092 (2013). [arXiv:1302.4367]ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kluson, J.: Hamiltonian formalism of general bimetric gravity (2013). [arXiv:1303.1652]Google Scholar
  21. 21.
    Kluson, J.: Hamiltonian formalism of bimetric gravity in vierbein formulation (2013). [arXiv:1307.1974]Google Scholar
  22. 22.
    Damour, T., Kogan, I.I.: Effective Lagrangians and universality classes of nonlinear bigravity. Phys. Rev. D66, 104024 (2002). [arXiv:hep-th/0206042]ADSMathSciNetGoogle Scholar
  23. 23.
    Deffayet, C., Mourad, J., Zahariade, G.: A note on ‘symmetric’ vielbeins in bimetric, massive, perturbative and non perturbative gravities. JHEP 1303, 086 (2013). [arXiv:1208.4493]ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Hassan, S., Rosen, R.A.: On non-linear actions for massive gravity. JHEP 1107, 009 (2011). [arXiv:1103.6055]ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Alexandrov, S., Krasnov, K., Speziale, S.: Chiral description of ghost-free massive gravity. JHEP 1306, 068 (2013). [arXiv:1212.3614]ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Plebanski, J.F.: On the separation of Einsteinian substructures. J. Math. Phys. 18, 2511–2520 (1977)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Alexandrov, S.Y., Vassilevich, D.V.: Path integral for the Hilbert–Palatini and Ashtekar gravity. Phys. Rev. D58, 124029 (1998). [arXiv:gr-qc/9806001]ADSMathSciNetGoogle Scholar
  28. 28.
    Gabadadze, G., Hinterbichler, K., Pirtskhalava, D., Shang, Y.: On the potential for general relativity and its geometry (2013). [arXiv:1307.2245]Google Scholar
  29. 29.
    Ondo, N.A., Tolley, A.J.: Complete decoupling limit of ghost-free massive gravity (2013). [arXiv:1307.4769]Google Scholar
  30. 30.
    Tamanini, N., Saridakis, E.N., Koivisto, T.S.: The cosmology of interacting spin-2 fields (2013). [arXiv:1307.5984]Google Scholar
  31. 31.
    de Rham, C., Matas, A., Tolley, A.J.: Deconstructing dimensions and massive gravity (2013). [arXiv:1308.4136]Google Scholar
  32. 32.
    Gruzinov, A.: All Fierz–Paulian massive gravity theories have ghosts or superluminal modes (2011). [arXiv:1106.3972]Google Scholar
  33. 33.
    de Fromont, P., de Rham, C., Heisenberg, L., Matas, A.: Superluminality in the bi- and multi-galileon. JHEP 1307, 067 (2013). [arXiv:1303.0274]CrossRefGoogle Scholar
  34. 34.
    Deser, S., Izumi, K., Ong, Y., Waldron, A.: Massive gravity acausality redux (2013). [arXiv:1306.5457]Google Scholar
  35. 35.
    Deser, S., Sandora, M., Waldron, A.: Nonlinear partially massless from massive gravity? Phys. Rev. D 87, 101501 (2013). [arXiv:1301.5621]Google Scholar
  36. 36.
    De Felice, A., Gumrukcuoglu, A.E., Mukohyama, S.: Massive gravity: nonlinear instability of the homogeneous and isotropic universe. Phys. Rev. Lett. 109, 171101 (2012). [arXiv:1206.2080]ADSCrossRefGoogle Scholar
  37. 37.
    De Felice, A., Gumrukcuoglu, A.E., Lin, C., Mukohyama, S.: On the cosmology of massive gravity (2013). [arXiv:1304.0484]Google Scholar
  38. 38.
    De Felice, A., Mukohyama, S.: Towards consistent extension of quasidilaton massive gravity (2013). [arXiv:1306.5502]Google Scholar
  39. 39.
    Deser, S., Nepomechie, R.I.: Anomalous propagation of gauge fields in conformally flat spaces. Phys. Lett. B132, 321 (1983)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    Deser, S., Nepomechie, R.I.: Gauge invariance versus masslessness in de Sitter space. Ann. Phys. 154, 396 (1984)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    de Rham, C., Renaux-Petel, S.: Massive gravity on de Sitter and unique candidate for partially massless gravity. JCAP 1301, 035 (2013). [arXiv:1206.3482]CrossRefGoogle Scholar
  42. 42.
    Hassan, S., Schmidt-May, A., von Strauss, M.: On partially massless bimetric gravity (2012). [arXiv:1208.1797]Google Scholar
  43. 43.
    de Rham, C., Hinterbichler, K., Rosen, R.A., Tolley, A.J.: Evidence for and obstructions to non-linear partially massless gravity. Phys. Rev. D 88, 024003 (2013). [arXiv:1302.0025]ADSCrossRefGoogle Scholar
  44. 44.
    Deser, S., Sandora, M., Waldron, A.: No consistent bimetric gravity? (2013). [arXiv:1306.0647]Google Scholar
  45. 45.
    Alexandrov, S.: Reality conditions for Ashtekar gravity from Lorentz-covariant formulation. Class. Quant. Grav. 23, 1837–1850 (2006). [arXiv:gr-qc/0510050]ADSCrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Alexandrov, S., Krasnov, K.: Hamiltonian analysis of non-chiral Plebanski theory and its generalizations. Class. Quant. Grav. 26, 055005 (2009). [arXiv:0809.4763]ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Speziale, S.: Bi-metric theory of gravity from the non-chiral Plebanski action. Phys. Rev. D 82, 064003 (2010). [arXiv:1003.4701]ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    Peldan, P.: Actions for gravity, with generalizations: a review. Class. Quant. Grav. 11, 1087–1132 (1994). [arXiv:gr-qc/9305011]ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Arnowitt, R.L., Deser, S., Misner, C.W.: Canonical variables for general relativity. Phys. Rev. 117, 1595–1602 (1960)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Deser, S., Isham, C.: Canonical vierbein form of general relativity. Phys. Rev. D14, 2505 (1976)ADSMathSciNetGoogle Scholar
  51. 51.
    Alexandrov, S.: SO(4, C)-covariant Ashtekar–Barbero gravity and the Immirzi parameter. Class. Quant. Grav. 17, 4255–4268 (2000). [arXiv:gr-qc/0005085]ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb, UMR 5221Université Montpellier 2MontpellierFrance

Personalised recommendations