General Relativity and Gravitation

, Volume 45, Issue 12, pp 2509–2528 | Cite as

Nonlinear multidimensional gravity and the Australian dipole

  • K. A. Bronnikov
  • V. N. Melnikov
  • S. G. Rubin
  • I. V. Svadkovsky
Research Article


The existing observational data on possible variations of fundamental physical constants (FPC) confirm more or less confidently only a variability of the fine structure constant \(\alpha \) in space and time. A model construction method is described, where variations of \(\alpha \) and other FPCs (including the gravitational constant \(G\)) follow from the dynamics of extra space-time dimensions in the framework of curvature-nonlinear multidimensional theories of gravity. An advantage of this method is a unified approach to variations of different FPCs. A particular model explaining the observable variations of \(\alpha \) in space and time has been constructed. It comprises a FRW cosmology with accelerated expansion, perturbed due to slightly inhomogeneous initial data.


Extra space Multidimensional gravity Fine structure constant Variation of constants Secondary inflation 



The authors wish to thank A. Panov for his interest in our work. The work of S. R. and I. S. was supported in part by the Ministry of Education and Science of the Russian Federation, project 14.A18.21.0789.


  1. 1.
    Drinkwater, M.J., Webb, J.K., Barrow, J.D., Flambaum, V.V.: Mon. Not. R. Astron. Soc. 295, 457 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Webb, J.K., et al.: Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Webb, J.K., et al.: Evidence for spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011). ArXiv:1008.3907Google Scholar
  4. 4.
    King, J.A., et al.: Spatial variation in the fine-structure constant—new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422, 3370–3414 (2012). ArXiv:1202.4758Google Scholar
  5. 5.
    Berengut, J.C., Flambaum, V.V.: Astronomical and laboratory searches for space-time variation of fundamental constants. J. Phys. Conf. Ser. 264, 012010 (2011). Arxiv:1009.3693Google Scholar
  6. 6.
    Rosenband, T., et al.: Observation of the 1S0>3P0 lock ransition in \(^{27}{\rm Al}^{+}.\) Phys. Rev. Lett. 98, 220801 (2007)Google Scholar
  7. 7.
    Shlyakhter, A.I.: Direct test of the constancy of fundamental nuclear constants. Nature 260, 340 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    Petrov, Y.V., et al.: Natural nuclear reactor Oklo and variation of fundamental constants. Part 1: computation of neutronics of fresh core. Phys. Rev. C 74, 064610 (2006). ArXiv:hep-ph/0506186Google Scholar
  9. 9.
    Gould, C.R., et al.: Time-variability of alpha from realistic models of Oklo reactors. Phys. Rev. C 74, 024607 (2006). ArXiv:nucl-ex/0701019Google Scholar
  10. 10.
    Barrow, J.D., Shaw, D.J.: Varying alpha: new onstraints from easonal ariations. Phys. Rev. D 78, 067304 (2008). ArXiv: 0806.4317Google Scholar
  11. 11.
    Berengut, J.C., et al.: Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. Phys. Rev. Lett. 111, 010801 (2013). ArXiv:1305.1337Google Scholar
  12. 12.
    Chiba, T.: The constancy of the constants of nature: updates. Prog. Theor. Phys. 126, 993–1019 (2011). ArXiv:1111.0092Google Scholar
  13. 13.
    Dicke, R.H., Peebles, P.J.E.: Phys. Rev. 128, 2006 (1962)ADSCrossRefGoogle Scholar
  14. 14.
    Staniukovich, K.P.: The Gravitational Field and Elementary Particles. Nauka, Moscow (1965). (in Russian)Google Scholar
  15. 15.
    Bekenstein, J.D.: Phys. Rev. D 25, 1527 (1982)Google Scholar
  16. 16.
    Sandvik, H.B., Barrow, J.D., Magueijo, J.: Phys. Rev. Lett. 88, 031302 (2002). astro-ph/0107512Google Scholar
  17. 17.
    Mota, D.F., Barrow, J.D.: Varying alpha in a more realistic universe. Phys. Lett. B 581, 141 (2004). astro-ph/0306047Google Scholar
  18. 18.
    Mota, D.F., Barrow, J.D.: Local and global variations of the fine structure constant. Mon. Not. Roy. Astron. Soc. 349, 291 (2004). astro-ph/0309273Google Scholar
  19. 19.
    Chiba, T., Yamaguchi, M.: Runaway domain wall and space-time varying \(\alpha \). JCAP 1103, 044 (2011). ArXiv:1102.0105Google Scholar
  20. 20.
    Olive, K.A., Peloso, M., Uzan, J.-P.: The wall of fundamental constants. Phys. Rev. D 83, 043509 (2011). ArXiv:1011.1504Google Scholar
  21. 21.
    Bamba, K., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 85, 044012 (2012). ArXiv:1107.2538Google Scholar
  22. 22.
    Olive, K.A., Peloso, M., Peterson, A.J.: Where are the walls? Phys. Rev. D 86, 043501 (2012). ArXiv:1204.4391Google Scholar
  23. 23.
    Barrow, J.D., Lip, S.Z.W.: A generalized theory of varying alpha. Phys. Rev. D 85, 023514 (2012). ArXiv:1110.3120Google Scholar
  24. 24.
    Mariano, A., Perivolaropoulos, L.: Is there correlation between fine structure and dark energy cosmic dipoles? Phys. Rev. D 86, 08351 (2012). ArXiv:1206.4055Google Scholar
  25. 25.
    Mariano, A., Perivolaropoulos, L.: CMB maximum temperature asymmetry axis: alignment with other cosmic asymmetries. Phys. Rev. D 87, 043511 (2013). ArXiv: 1211.5915Google Scholar
  26. 26.
    Langacker, P., Segre, G., Strassler, M.J.: implications of gauge unification for time variation of the fine structure constant. Phys. Lett. B 528, 121–128 (2002). ArXiv:hep-ph/0112233Google Scholar
  27. 27.
    Calmet, X., Fritzsch, H.: The cosmological evolution of the nucleon mass and the electroweak coupling constants. Eur. Phys. J. C 24, 639–642 (2002). ArXiv:hep-ph/0112110Google Scholar
  28. 28.
    Uzan, J.-P.: Varying constants, gravitation and cosmology. Living Rev Relativ. 14, 2 (2011). ArXiv:1009.5514Google Scholar
  29. 29.
    Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Phys. Rev. D 21, 2167 (1980)Google Scholar
  30. 30.
    Freund, P.G.O.: Kaluza–Klein cosmologies. Nucl. Phys. B 209, 146 (1982)Google Scholar
  31. 31.
    Marciano, W.J.: Time variation of the fundamental constants and Kaluza–Klein theories. Phys. Rev. Lett. 52, 489 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Kolb, E.W., Perry, M.J., Walker, T.P.: Time variation of fundamental constants, primordial nucleosynthesis, and the size of extra dimensions. Phys. Rev. D 33, 869 (1986)Google Scholar
  33. 33.
    Barrow, J.D.: Observational limits on the time evolution of extra spatial dimensions. Phys. Rev. D 35, 1805 (1987)Google Scholar
  34. 34.
    Kanno, S., Soda, J., Watanabe, M.: Anisotropic power-law inflation. JCAP 1012, 024 (2010). arXiv:1010.5307Google Scholar
  35. 35.
    Bronnikov, K.A., Rubin, S.G.: Self-stabilization of extra dimensions. Phys. Rev. D 73, 124019 (2006)Google Scholar
  36. 36.
    Bronnikov, K.A., Rubin, S.G., Svadkovsky, I.V.: Multidimensional world, inflation and modern acceleration. Phys. Rev. D 81, 084010 (2010)Google Scholar
  37. 37.
    Bolokhov, S.V., Bronnikov, K.A., Rubin, S.G.: Extra dimensions as a source of the electroweak model. Phys. Rev. D 84, 044015 (2011)Google Scholar
  38. 38.
    Rubin, S.G., Zinger, A.S.: The Universe formation by a space reduction cascade with random initial parameters. Gen. Relativ. Gravit. 44, 2283 (2012). ArXiv:1101.1274Google Scholar
  39. 39.
    Bronnikov, K.A., Rubin, S.G.: Black Holes, Cosmology and Extra Dimensions. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  40. 40.
    Kirillov, A.A., Korotkevich, A.A., Rubin, S.G.: Emergence of symmetries. Phys. Lett. B 718, 237–240 (2012). ArXiv:1205.1108Google Scholar
  41. 41.
    Jarosik, N., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Free issue. Astrophys. J. Suppl. 192, 14 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Bronnikov, K.A., Melnikov, V.N.: On observational predictions from multidimensional gravity. Gen. Relativ. Gravit. 33, 1549 (2001). gr-qc/0103079Google Scholar
  43. 43.
    Bronnikov, K.A., Melnikov, V.N.: Conformal frames and D-dimensional gravity, gr-qc/0310112. In: Gillies, G.T., Melnikov, V.N., de Sabbata, V. (ed.) Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments, pp. 39–64, 30 April-10 May 2003, Erice. Kluwer, Dordrecht/Boston/London (2004)Google Scholar
  44. 44.
    Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters. ArXiv:1303.5076Google Scholar
  45. 45.
    Said, N., Baccigalupi, C., Martinelli, M., Melchiorri, A., Silvestri, A.: New constraints on the dark energy equation of state. Phys. Rev. D 88, 043515 (2013). ArXiv:1303.4353Google Scholar
  46. 46.
    Farooq, O., Ratra, B.: Constraints on dark energy from the Ly\(\alpha \) forest baryon acoustic oscillations measurement of the redshift 2.3 Hubble parameter. ArXiv:1212.4264Google Scholar
  47. 47.
    Farooq, O., Mania, D., Ratra, B.: Hubble parameter measurement constraints on dark energy. ArXiv:1211.4253Google Scholar
  48. 48.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). hep-ph/9807344Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. A. Bronnikov
    • 1
    • 2
  • V. N. Melnikov
    • 1
    • 2
  • S. G. Rubin
    • 3
  • I. V. Svadkovsky
    • 3
  1. 1.Center for Gravitation and Fundamental Metrology, VNIIMSMoscowRussia
  2. 2.Institute of Gravitation and Cosmology, PFURMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations