General Relativity and Gravitation

, Volume 45, Issue 11, pp 2383–2388 | Cite as

A novel derivation of the rotating black hole metric

Research Article


We derive the rotating black hole metric by appealing to ellipsoidal symmetry of space and a general guiding principle of incorporation of the Newtonian acceleration for massive and no acceleration for massless particles.


Kerr solution Rotating black hole Kerr–Newman black hole Gravitational self interaction 


  1. 1.
    Dadhich, N.: Subtle is the gravity. (Vaidya-Raychaudhuri Lecture, arxiv:gr-qc/0102009); Universalization as a physical guiding principle, arxiv:gr-qc/0311028; Why Einstein (Had I been born in 1844!)? arxiv:physics/0505090Google Scholar
  2. 2.
    Dadhich, N.: Einstein is Newton with space curved. arxiv:1206.0635Google Scholar
  3. 3.
    Dadhich, N.: On the Schwarzschild field. gr-qc/9704068Google Scholar
  4. 4.
    Krasinski, A.: Ann. Phys. 112, 22–40 (1978)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Nikolic, B.D., Pantic, M.R.: A possible derivation of the Kerr metric in orthogonal form based on ellipsoidal metric ansatz. arxiv:1210.5922Google Scholar
  6. 6.
    Chellathurai, V., Dadhich, N.: Class. Quantum Grav. 7, 361 (1990)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Abramowicz, M.: The perihelion of Mercury advance calculated in Newton’s theory. arxiv:1212.0264Google Scholar
  8. 8.
    Barriola, M., Vilenkin, A.: Phys. Rev. Lett. 63, 341 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Dadhich, N.: Pramana 74, 875–882 (2010). arxiv:0802.3034Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Inter-University Centre for Astronomy and AstrophysicsPuneIndia

Personalised recommendations