Advertisement

General Relativity and Gravitation

, Volume 45, Issue 9, pp 1815–1838 | Cite as

Conformally rescaled spacetimes and Hawking radiation

  • Alex B. NielsenEmail author
  • J. T. Firouzjaee
Research Article

Abstract

We study various derivations of Hawking radiation in conformally rescaled metrics. We focus on two important properties, the location of the horizon under a conformal transformation and its associated temperature. We find that the production of Hawking radiation cannot be associated in all cases to a trapping horizon because its location is not invariant under a conformal transformation. We also find evidence that the temperature of the Hawking radiation should transform simply under a conformal transformation, being invariant for asymptotic observers in the limit that the conformal transformation factor is unity at their location.

Keywords

Black Holes Hawking radiation Killing horizons  Quasi-local horizons trapping horizons Conformal transformations Schwarzschild solution 

Notes

Acknowledgments

A. B. N. is very grateful for generous support from the Alexander von Humboldt foundation and J. T. F. is grateful to the Max Planck Institute for Gravitational Physics in Potsdam for hospitality during April to June 2011, where the majority of this work was completed. The authors are grateful to Carlos Barcelo for useful discussions.

References

  1. 1.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D15, 2738–2751 (1977)MathSciNetADSGoogle Scholar
  2. 2.
    Hawking, S.W.: Commun. Math. Phys. 43, 199–220 (1975)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Christensen, S.M., Fulling, S.A.: Phys. Rev. D 15, 2088 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042–5045 (2000)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Class. Quant. Gravit. 28, 183001 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: Phys. Lett. B 657, 107–111 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Hayward, S.A., Di Criscienzo, R., Vanzo, L., Nadalini, M., Zerbini, S.: Class. Quant. Gravit. 26, 062001 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Nielsen, A.B.: Gen. Relativ. Gravit. 41, 1539–1584 (2009)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Cai, R.-G., Cao, L.-M., Hu, Y.-P.: Class. Quant. Gravit. 26, 155018 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Visser, M.: Int. J. Mod. Phys. D 12, 649–661 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Barcelo, C., Liberati, S., Visser, M.: Living Rev. Rel. 8 (2005) 12 (Living Rev. Rel. 14 (2011) 3)Google Scholar
  13. 13.
    Jacobson, T., Kang, G.: Class. Quant. Gravit. 10, L201 (1993)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Koga, J.-I., Maeda, K.-I: Phys. Rev. D 58, 064020 (1998)Google Scholar
  15. 15.
    Jacobson, T., Kang, G., Myers, R.C.: Phys. Rev. D 49, 6587 (1994)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Nielsen, A.B.: Class. Quant. Gravit. 27, 245016 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Faraoni, V., Nielsen, A.B.: Class. Quant. Gravit. 28, 175008 (2011)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. D 51, 4236 (1995)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Flanagan, E.E.: Class. Quant. Gravit. 21, 3817 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Faraoni, V., Nadeau, S.: Phys. Rev. D 75, 023501 (2007)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Deruelle, N., Sasaki, M.: [arXiv:1007.3563 [gr-qc]]Google Scholar
  22. 22.
    Dicke, R.H.: Phys. Rev. 125, 2163–2167 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Codello, A., D’Odorico, G., Pagani, C., Percacci, R.: Class. Quant. Grav. 30, 115015 (2013)Google Scholar
  24. 24.
    Visser, M., Barcelo, C., Liberati, S., Sonego, S.: Proceedings of the workshop on black holes in general relativity and string theory, Velj Lošinj, Croatia, 24–30 Aug (2008)Google Scholar
  25. 25.
    Marques, G.T., Rodrigues, M.E.: Eur. Phys. J. C 72, 1891 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quant. Gravit. 27, 015006 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Magnano, G., Sokolowski, L.M.: Phys. Rev. D 50, 5039–5059 (1994)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Ashtekar, A., Corichi, A., Sudarsky, D.: Class. Quant. Gravit. 20, 3413 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Hayward, S.A.: Phys. Rev. D 49, 6467 (1994)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Wald, R.M.: Phys. Rev. D 48, 3427 (1993)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quant. Gravit. 27, 015006 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Hayward, S.A.: Class. Quant. Gravit. 15, 3147 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Sewell, G.L.: Phys. Lett. A 79, 23 (1980)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Alvarez-Gaume, L., Witten, E.: Nucl. Phys. B 234, 269 (1984)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Bertlmann, R.A., Kohlprath, E.: Ann. Phys. 288, 137 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Vagenas, E.C., Das, S.: JHEP 0610, 025 (2006)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Nielsen, A.B., Yoon, J.H.: Class. Quant. Gravit. 25, 085010 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Pielahn, M., Kunstatter, G., Nielsen, A.B.: Phys. Rev. D 84, 104008 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. Butterworth-Heinemann, Oxford (1974)Google Scholar
  41. 41.
    Ford, L.H.: In: Campos do Jordao 1997, Particles and fields, pp. 345–388 [gr-qc/9707062]Google Scholar
  42. 42.
    Barcelo, C., Liberati, S., Sonego, S., Visser, M.: JHEP 1102, 003 (2011)Google Scholar
  43. 43.
    Barcelo, C., Liberati, S., Sonego, S., Visser, M.: Phys. Rev. D 83, 041501 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Nielsen, A.B., Jasiulek, M., Krishnan, B., Schnetter, E.: Phys. Rev. D 83, 124022 (2011)Google Scholar
  45. 45.
    Barcelo, C., Liberati, S., Sonego, S., Visser, M.: Phys. Rev. Lett. 97, 171301 (2006)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Barbado, L.C., Barcelo, C., Garay, L.J., Jannes, G.: JHEP 1111, 112 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikGolmGermany
  2. 2.HannoverGermany
  3. 3.Department of PhysicsSharif University of TechnologyTehranIran
  4. 4.School of PhysicsInstitute for Research in Fundamental SciencesTehranIran

Personalised recommendations