Advertisement

General Relativity and Gravitation

, Volume 45, Issue 6, pp 1131–1144 | Cite as

On the static Lovelock black holes

  • Naresh Dadhich
  • Josep M. Pons
  • Kartik Prabhu
Research Article

Abstract

We consider static spherically symmetric Lovelock black holes and generalize the dimensionally continued black holes in such a way that they asymptotically for large \(r\) go over to the d-dimensional Schwarzschild black hole in dS/AdS spacetime. This means that the master algebraic polynomial is not degenerate but instead its derivative is degenerate. This family of solutions contains an interesting class of pure Lovelock black holes which are the \(N\)th order Lovelock \(\Lambda \)-vacuum solutions having the remarkable property that their thermodynamical parameters have the universal character in terms of the event horizon radius. This is in fact a characterizing property of pure Lovelock theories. We also demonstrate the universality of the asymptotic Einstein limit for the Lovelock black holes in general.

Keywords

Lovelock gravities Black holes Thermodynamics of black holes 

References

  1. 1.
    Lovelock, D.: J. Math. Phys. 12, 498 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Lovelock, D.: J. Math. Phys. 13, 874 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Phys. Lett. B 173, 69 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Gross, D.J., Witten, E.: Nucl. Phys. B 277, 1 (1986) Google Scholar
  5. 5.
    Zumino, B.: Phys. Rep. 137, 109 (1985)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Zwiebach, B.: Phys. Lett. B 156, 315 (1985)Google Scholar
  7. 7.
    Friedan, D.: Phys. Rev. Lett. 45, 1057 (1980)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Jack, I., Jones, D., Mohammedi, N.: Nucl. Phys. B 322, 431 (1989)Google Scholar
  9. 9.
    Callan, C., Friedan, D., Martinec, E., Perry, M.: Nucl. Phys. B 262, 593 (1985)Google Scholar
  10. 10.
    Dadhich, N.: Universality, gravity, the enigmatic \(\Lambda \) and beyond, arxiv:gr-qc/0405115; Probing universality of gravity, arxiv:gr-qc/0407003; On the Gauss Bonnet gravity, mathematical physics. In: Islam, M.J., Hussain, F., Qadir, A., Riazuddin, Saleem, H. (eds.) Proceedings of the 12th Regional Conference on Mathematical Physics. World Scientific, 331; (arxiv:hep-th/0509126); Math. Today 26, 37 (2011), arxiv:1006.0337Google Scholar
  11. 11.
    Dadhich, N.: Pramana 74, 875 (2010); arxiv:0802.3034Google Scholar
  12. 12.
    Dadhich, N., Pons, J.M.: Phys. Lett. B 705, 139 (2011); arxiv:1012.1692Google Scholar
  13. 13.
    Boulware, D.G., Deser, S.: Phys. Rev. Lett. 55, 2656 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    Wiltshire, D.L.: Phys. Lett. 169B, 36 (1986)MathSciNetADSGoogle Scholar
  15. 15.
    Wheeler, J.T.: Nucl. Phys. B 268, 737 (1986)Google Scholar
  16. 16.
    Wheeler, J.T.: Nucl. Phys. B 273, 732 (1986)Google Scholar
  17. 17.
    Whitt, B.: Phys. Rev. D 38, 3000 (1988)Google Scholar
  18. 18.
    Myers, R.C., Simon, J.Z.: Phys. Rev. 38, 2434 (1988)MathSciNetADSGoogle Scholar
  19. 19.
    Cai, R.G., Soh, K.S.: Phys. Rev. D 59, 044013 (1999); arxiv:gr-qc/9808067Google Scholar
  20. 20.
    Cai, R.G.: Phys. Rev. D 65, 084014 (2002); arxiv:hep-th/0109133 [hep-th]Google Scholar
  21. 21.
    Cai, R.G., Guo, Q.: Phys. Rev. D 69, 104025 (2004); arxiv:hep-th/0311020Google Scholar
  22. 22.
    Kofinas, G., Olea, R.: JHEP |bf 0711, 069 (2007); arxiv:0708.0782Google Scholar
  23. 23.
    Garraffo, C., Giribet, G.: Mod. Phys. Lett. A 23, 1801 (2008); arxiv:0805.3575Google Scholar
  24. 24.
    Camanho, X.O., Edelstein, J.D.: A Lovelock black hole bestiary. Class. Quant. Gravity. 30, 035009 (2013); arXiv:1103.3669 [hep-th]Google Scholar
  25. 25.
    Crisostomo, J., Troncoso, R., Zanelli, J.: Phys. Rev. D 62, 084013 (2000)Google Scholar
  26. 26.
    Bañados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 49, 975 (1994)Google Scholar
  27. 27.
    Dadhich, N.: Math. Today 26, 37 (2011); arxiv:1006.0337Google Scholar
  28. 28.
    Dadhich, N., Pons, J.M., Prabhu, K.: Thermodynamical universality of the Lovelock black holes. Gen. Relativ. Gravit. 44, 2595 (2012); arXiv:1110.0673 [grqc]Google Scholar
  29. 29.
    Dadhich, N., Molina, A., Khugaev, A.: Phys. Rev. D 81, 104026 (2010)Google Scholar
  30. 30.
    Dadhich, N., Ghosh, S., Jhingan, S.: The Lovelock gravity in the critical spacetime dimension. Phys. Lett. B 711, 196 (2012); arXiv:1202.4575 [gr-qc]Google Scholar
  31. 31.
    Jacobson, T., Myers, R.C.: Phys. Rev. Lett. 70, 3684 (1993); arxiv:hep-th/9305016v1Google Scholar
  32. 32.
    Bañados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Cai, R.G.: Phys. Lett. B 582, 237 (2004); arxiv:hep-th/0311240v2Google Scholar
  34. 34.
    Maeda, H., Dadhich, N.: Phys. Rev. D 75, 044007 (2007); arxiv:hep-th/0611188Google Scholar
  35. 35.
    Dadhich, N., Maeda, H.: Int. J. Mod. Phys. D 17, 513–518 (2008); arxiv:0705.2490Google Scholar
  36. 36.
    Dadhich, N., Molina, A., Khugaev, A.: Phys. Rev. D 81, 104026 (2010); arxiv:1001.3922Google Scholar
  37. 37.
    Cai, R.G., Cao, L.M., Ohta, N.: Phys. Rev. D 81, 024018 (2010); arxiv:0911.0245Google Scholar
  38. 38.
    Cai, R.G., Ohta, N.: Phys. Rev. D 74, 064001 (2006); arxiv:hep-th/0604088Google Scholar
  39. 39.
    Cai, R.G., Cao, L.-M., Hu, Y.P., Kim, S.P.: Phys. Rev. D 78, 124012 (2008); arxiv:0810.2610v3Google Scholar
  40. 40.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Inter-University Centre for Astronomy and AstrophysicsPuneIndia
  2. 2.DECM and ICC, Facultat de FísicaUniversitat de BarcelonaBarcelona, CataloniaSpain
  3. 3.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations