General Relativity and Gravitation

, Volume 45, Issue 4, pp 819–844 | Cite as

Gravitational collapse with tachyon field and barotropic fluid

  • Yaser Tavakoli
  • João Marto
  • Amir Hadi Ziaie
  • Paulo Vargas Moniz
Research Article

Abstract

A particular class of space-time, with a tachyon field, \(\phi \), and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., \(V(\phi )\sim \phi ^{-2}\). Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, \(\gamma \). Furthermore, these collapsing scenarios both have as final state the formation of a black hole.

Keywords

Gravitational collapse Singularities Tachyon field 

References

  1. 1.
    Joshi, P.: Gravitational Collapse and Space-Time Singularities. Cambridge University Press, Cambridge (2007)Google Scholar
  2. 2.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1974)Google Scholar
  3. 3.
    Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)Google Scholar
  4. 4.
    Harada, T.: Phys. Rev. D 58, 104015 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Harada, T., Maeda, H.: Phys. Rev. D 63, 084022 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Goswami, R., Joshi, P.S.: Class. Quantum Gravity 19, 5229 (2002)ADSCrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Giamb, R., Giannoni, F., Magli, G., Piccione, P.: Gen. Relativ. Gravit. 36, 1279 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Villas da Rocha, J.F., Wang, A.: Class. Quantum Gravity 17, 2589 (2000)ADSCrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Giamb, R., Giannoni, F., Magli, G., Piccione, P.: Class. Quantum Gravity 20, 4943 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Szekeres, P., Iyer, V.: Phys. Rev. D 47, 4362 (1993)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Barve, S., Singh, T.P., Witten, L.: Gen. Relativ. Gravit. 32, 697 (2000)ADSCrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Coley, A.A., Tupper, B.O.J.: Phys. Rev. D 29, 2701 (1984)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lake, K.: Phys. Rev. D 26, 518 (1982)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Giamb, R.: Class. Quantum Gravity 22, 2295 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Bhattacharya, S., Goswami, R., Joshi, P.S.: Int. J. Mod. Phys. D 20, 1123 (2011)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Bhattacharya, S.: arXiv:1107.4112 [gr-qc]Google Scholar
  17. 17.
    Ori, A., Piran, T.: Phys. Rev. Lett. 59, 2137 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    Ori, A., Piran, T.: Phys. Rev. D 42, 1068 (1990)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Foglizzo, T., Henriksen, R.: Phys. Rev. D 48, 4645 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Mena, F.C., Nolan, B.C., Tavakol, R.: Phys. Rev. D 70, 084030 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Gosh, S.G., Dadhich, N.: Gen. Relativ. Gravit. 35, 359 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Harko, T., Cheng, S.K.: Phys. Lett. A 226, 249 (2000)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gundlach, C., Martn-Garca, J.M.: Living Rev. Relativ. 10, 5 (2007)ADSGoogle Scholar
  24. 24.
    Schunck, F.E., Mielke, E.W.: Class. Quantum Gravity 20, R301 (2003); arXiv:0801.0307 [astro-ph]Google Scholar
  25. 25.
    Giamb, R., Giannoni, F., Magli, G.: J. Math. Phys. 49, 042504 (2008)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Giamb, R., Giannoni, F., Magli, G.: Gen. Relativ. Gravit. 41, 21 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Ganguly, K., Banerjee, N.: Gen. Relativ. Gravit. 43, 2141 (2011)ADSCrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Janis, A.I., Newman, E.T., Winicour, J.: Phys. Rev. Lett 20, 878 (1968)ADSCrossRefGoogle Scholar
  29. 29.
    Wyman, M.: Phys. Rev. D 24, 839 (1981)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Xanthopoulos, B.C., Zannias, T.: Phys. Rev. D 40, 2564 (1989)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Bergmann, O., Leipnik, R.: Phys. Rev. 107, 1157 (1957)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Buchdahl, H.A.: Phys. Rev. 115, 1325 (1959)ADSCrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Choptuik, M.: Phys. Rev. Lett. 70, 9 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Christodoulou, D.: Ann. Math. 140, 607 (1994)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Pereira, F.I.M., Chan, R.: Int. J. Mod. Phys. D 17, 2143 (2008); arXiv:0803.2628 [gr-qc]Google Scholar
  36. 36.
    Jankiewicz, M., Sen, A.A.: arXiv:0602.085 [gr-qc]Google Scholar
  37. 37.
    Mazumdar, A., Panda, S., Perez-Lorenzana, A.: Nucl. Phys. B 614, 101 (2001)ADSCrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Piao, Y.-S., Cai, R.-G., Zhang, X., Zhang, Y.-Z.: Phys. Rev. D 66, 121301 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Fairbairn, M., Tytgat, M.H.G.: Phys. Lett. B 546, 1 (2002)ADSCrossRefMATHGoogle Scholar
  40. 40.
    Sen, A.: Int. J. Mod. Phys. A, 20, 5513 (2005); arXiv: 0410.103 [hep-th]Google Scholar
  41. 41.
    Aguirregabiria, J.M., Lazkoz, R.: Phys. Rev. D 69, 123502 (2004)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    Goswami, R., Joshi, P., Singh, P.: Phys. Rev. Lett. 96, 031302 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Hayward, S.A.: Phys. Rev. D 53, 1938 (1996)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    Bak, D., Rey, S.J.: Class. Quantum Gravity 17, L83 (2000)ADSCrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Singh, T.P.: Phys. Rev. D 58, 024004 (1998)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Malec, E., Murchadha, N.: Phys. Rev. D 47, 1454 (1993)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    Goswami, R., Joshi, P.: arXiv: 0410.144 [gr-qc] (2004)Google Scholar
  49. 49.
    Ziaie, A.H., Atazadeh, K., Tavakoli, Y.: Class. Quantum Gravity 27, 075016 (2010); arXiv: 1003.1725 [gr-qc]Google Scholar
  50. 50.
    Ziaie, A.H., Atazadeh, K., Rasouli, S.M.M.: arXiv: 1106.5638 [gr-qc] (2011)Google Scholar
  51. 51.
    Joshi, P.S., Goswami, R.: Class. Quantum Gravity 24, 2917 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  52. 52.
    Goswami, R., Joshi, P.S., Vaz, C., Witten, L.: Phys. Rev. D 70, 084038 (2004)ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    Joshi, P.S., Goswami, R.: arXiv:0711.0426v1 [gr-qc]Google Scholar
  54. 54.
    Joshi, P.S., Dwivedi, I.H.: Class. Quantum Gravity 16, 41 (1999)ADSCrossRefMathSciNetMATHGoogle Scholar
  55. 55.
    Wang, A., Wu, Y.: Gen. Relativ. Gravity 31, 107 (1999)ADSCrossRefMATHGoogle Scholar
  56. 56.
    Garousi, M.R.: Nucl. Phys. B 584, 284 (2000)ADSCrossRefMathSciNetMATHGoogle Scholar
  57. 57.
    Bergshoeff, E.A., de Roo, M., de Wit, T.C., Eyras, E., Panda, S.: J. High Energy Phys. 05, 009 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    Akhoury, R., Garfinklea, D., Saotomea, R.: J. High Energy Phys. 1104, 096 (2011); arXiv: 1103.0290 [gr-qc]Google Scholar
  59. 59.
    Frolov, A., Kofman, L., Starobinsky, A.: Phys. Lett. B 545, 8 (2002); arXiv: 0204187 [hep-th]Google Scholar
  60. 60.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1996)Google Scholar
  61. 61.
    Carr, J.: Applications of Center Manifold Theorem. Springer, Berlin (1981)CrossRefGoogle Scholar
  62. 62.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, Berlin (1983)Google Scholar
  63. 63.
    Liddle, A.R., Scherrer, R.J.: Phys. Rev. D 59, 023509 (1999)ADSCrossRefGoogle Scholar
  64. 64.
    Tippett, B.K., Hussain, V.: Phys. Rev. D 84, 104031 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Sen, A.A.: Phys. Rev. D 74, 043501 (2006)ADSCrossRefMathSciNetGoogle Scholar
  66. 66.
    Tsamparlis, M., Paliathanasisa, A.: arXiv:1111.5567 [gr-qc]Google Scholar
  67. 67.
    Goswami, R., Joshi, P.: arXiv: 0410.144 [gr-qc]Google Scholar
  68. 68.
    Tipler, F.J.: Phys. Lett. A 67, 8 (1977)ADSCrossRefMathSciNetGoogle Scholar
  69. 69.
    Tipler, F.J., Clarke, C.J.S., Ellis, G.F.R.: In: Held, A. (ed.) General Relativity and Gravitation, 2nd edn, p. 97. Plenum, New York (1980)Google Scholar
  70. 70.
    Clarke, C.J.S.: The Analysis of Space-Time Singularities. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  71. 71.
    Feinstein, A.: Phys. Rev. D 66, 063511 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    Guo, Z.-K., Piao, Y.S., Cai, R.G., Zhang, Y.Z.: Phys. Rev. D 68, 043508 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    Ambramo, L.R.W., Finelli, F.: Phys. Lett. B 575, 165 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: Phys. Rev. D 71, 043003 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    Quiros, I., Gonzalez, T., Gonzalez, D., Napoles, Y., Garca-Salcedo, R., Moreno, C.: Class. Quantum Gravity 27, 215021 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Sen, A.: J. High Energy Phys. 12, 021 (1998)ADSGoogle Scholar
  77. 77.
    Sen, A.A.: J. High Energy Phys. 04, 048 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    Sen, A.A.: J. High Energy Phys. 07, 065 (2002)ADSCrossRefGoogle Scholar
  79. 79.
    Sen, A.A.: J. High Energy Phys. 16, 281 (1989)Google Scholar
  80. 80.
    Ghate, S.H., Saraykar, R.V., Patil, K.D.: Pramana J. Phys. 53, 253 (1999)CrossRefGoogle Scholar
  81. 81.
    Folomeev, V.: arXiv:1205.2974 [astro-ph]Google Scholar
  82. 82.
    Folomeev, V., Singleton, D.: Phys. Rev. D 85, 064045 (2012); arXiv:1112.1786 [astro-ph]Google Scholar
  83. 83.
    Folomeev, V.: Phys. Rev. D 85, 024008 (2012); arXiv:1108.3395 [astro-ph]Google Scholar
  84. 84.
    Tavakoli, Y., Marto, J., Ziaie, A.H., Vargas Moniz, P.: Semiclassical gravitational collapse with tachyon field and barotropic fluid (in preparation)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yaser Tavakoli
    • 1
  • João Marto
    • 1
  • Amir Hadi Ziaie
    • 2
  • Paulo Vargas Moniz
    • 1
    • 3
  1. 1.Departamento de FísicaUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Department of PhysicsShahid Beheshti UniversityTehranIran
  3. 3.CENTRA, ISTLisbonPortugal

Personalised recommendations