Skip to main content
Log in

The conformal transformation’s controversy: what are we missing?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An alternative interpretation of the conformal transformations of the metric is discussed according to which the latter can be viewed as a mapping among Riemannian and Weyl-integrable spaces. A novel aspect of the conformal transformation’s issue is then revealed: these transformations relate complementary geometrical pictures of a same physical reality, so that, the question about which is the physical conformal frame, does not arise. In addition, arguments are given which point out that, unless a clear statement of what is understood by “equivalence of frames” is made, the issue is a semantic one. For definiteness, an intuitively “natural” statement of conformal equivalence is given, which is associated with conformal invariance of the field equations. Under this particular reading, equivalence can take place only if the metric is defined up to a conformal equivalence class. A concrete example of a conformal-invariant theory of gravity is then explored. Since Brans–Dicke theory is not conformally invariant, then the Jordan’s and Einstein’s frames of the theory are not equivalent. Otherwise, in view of the alternative approach proposed here, these frames represent complementary geometrical descriptions of a same phenomenon. The different points of view existing in the literature are critically scrutinized on the light of the new arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Needless to say that the conformal transformation’s issue is critical for the interpretation of the predictions of given scalar-tensor theories of gravity since these are deeply affected by the choice of the conformal frame [4, 6, 8, 9, 16]. It is of central importance also for the understanding of the physics behind the graviton-dilaton string effective theory [17] since, independent of the dimensionality of the spacetime and the number of compactified dimensions, the string frame (SF) dilaton-gravity action is nothing but JFBD action with, \(\omega =-1\) (see, however, Ref. [18]). The string effective theory may be formulated in a number of conformal frames as well, including the SF and the EF among others.

  2. Here by “geometry” we understand the affine properties of space such as, the affine connection, the geodesics, etc.

  3. Here we deal with classical theories of the gravitational field. In consequence, arguments related with quantum properties and processes will not be considered.

  4. For applications of WIG in cosmology see, for instance, the review [52], and also Ref. [53].

  5. In this paper sometimes we shall call as “scale invariance” invariance under the Weyl rescalings (15).

  6. A different point of view on this property is exposed in [10] (see, however, the discussion in Sect. 7.2).

  7. Notice that if one suppresses the over bar and identifies \(\varphi \equiv \ln \Omega ^{-2}\), then, there is full resemblance with Eq. (14) of Sect. 2.1.

  8. Compare with WI geodesic equations given in Eq. (20). Complete resemblance with (20) is obtained if set, \(\Omega ^2=e^{-\varphi }\) \(\Rightarrow \,\partial _\mu \Omega /\Omega =-\partial _\mu \varphi /2\).

  9. As we have shown, it is not necessary to have additional matter sources to reveal the existence of a five-force. Recall that, under the present viewpoint on (7), the motion of test point particles in the conformal Riemannian space is non-geodesic.

  10. The corresponding measurable quantities can be contrasted with the experimental/observational evidence [16]. As a result, one can, at least in principle, experimentally/observationally differentiate among the different theories. While in the JF of BD theory one has to care about positivity of energy—besides observational constraints from Solar system experiments which yield to unnaturally large values of the BD coupling \(\omega >40{,}000\)—in the EFBD theory one has to meet the tight constraints coming from five-force experiments.

  11. See, however, the reference [33], where a similar interpretation is managed through the concept of “conformal Weyl frames”.

  12. Even if the JFBD and EFBD formulations are mathematically linked through a conformal transformation, \({\bar{g}}_{\mu \nu }=e^\varphi g_{\mu \nu }\), this does not mean that these representations are equivalent at all. Perhaps a closer notion could be “duality” or “complementarity” rather than “equivalence”. In Ref. [61], for instance, the author relies on the notion of “geometrical duality” instead of “conformal equivalence”. Duality of the conformal descriptions implies that these are different but mathematically related. Given that “duality” has been used in string theory in a quite different context [17], complementarity can be a better suited synonym.

  13. That a scale-invariant scalar-tensor action corresponds to the (singular) choice \(\omega =-3/2\) in BD theory has been shown, for instance, in the very well-known paper [63] (see also [70]).

  14. In references [33] and [71] a similar action was investigated in different contexts. In Ref. [33], besides the pure geometric part, also a “cosmological constant” and matter terms were considered.

  15. We have to recall that invariance under diffeomorphisms and scale-invariance are independent symmetry requirements: conformal transformations of the kind considered here are not diffeomorphisms. It is evident that the scale-invariant theory given by the action (35) is also invariant under diffeomorphisms.

  16. See Eq. (3.1) of Ref. [10], and compare with correct equations in Eq. (4) of the first entry in [11, 12], where \(|ds|\) is involved rather than the \(dx^\mu \).

  17. The study of the impact conformal transformations have on anisotropic singularities requires a more careful analysis.

References

  1. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925–935 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Dicke, R.H.: Phys. Rev. 125, 2163–2167 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Fierz, M.: Helv. Phys. Acta 29, 128 (1956)

    MathSciNet  MATH  Google Scholar 

  4. Magnano, G., Sokolowski, L.M.: Phys. Rev. D 50, 5039–5059 (1994) [e-Print: gr-qc/9312008]

    Google Scholar 

  5. Capozziello, S., de Ritis, R., Marino, A.A.: Class. Quantum Grav. 14, 3243–3258 (1997) [e-Print: gr-qc/9612053]

    Google Scholar 

  6. Faraoni, V., Gunzig, E., Nardone, P.: Fund. Cosmic Phys. 20, 121 (1999) [e-Print: gr-qc/9811047]

  7. Faraoni, V., Gunzig, E.: Int. J. Theor. Phys. 38, 217–225 (1999) [e-Print: astro-ph/9910176]

  8. Vollick, D.N.: Class. Quantum Grav. 21, 3813–3816 (2004) [e-Print: gr-qc/0312041]

  9. Flanagan, E.E.: Class. Quantum Grav. 21, 3817 (2004) [e-Print: gr-qc/0403063]

  10. Faraoni, V., Nadeau, S.: Phys. Rev. D 75, 023501 (2007) [e-Print: gr-qc/0612075]

  11. Catena, R., Pietroni, M., Scarabello, L.: Phys. Rev. D 76, 084039 (2007) [e-Print: astro-ph/0604492]

  12. Catena, R., Pietroni, M., Scarabello, L.: J. Phys. A 40, 6883–6888 (2007) [e-Print: hep-th/0610292]

    Google Scholar 

  13. Capozziello, S., Martin-Moruno, P., Rubano, C.: Phys. Lett. B 689, 117–121 (2010) [e-Print: arXiv:1003.5394]

    Google Scholar 

  14. Capozziello, S., Darabi, F., Vernieri, D.: Mod. Phys. Lett. A 25, 3279–3289 (2010) [e-Print: arXiv:1009.2580]

  15. Deruelle, N., Sasaki, M.: e-Print: arXiv:1007.3563; e-Print: arXiv:1012.5386

  16. Corda, C.: Astropart. Phys. 34, 412–419 (2011) [e-Print: arXiv:1010.2086]

    Google Scholar 

  17. Lidsey, J.E., Wands, D., Copeland, E.J.: Phys. Rept. 337, 343–492 (2000) [e-Print: hep-th/9909061]

    Google Scholar 

  18. Blaschke, D., Dabrowski, M.P.: e-Print: hep-th/0407078

  19. Cho, Y.M.: Phys. Rev. Lett. 68, 3133 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Faraoni, V.: Phys. Lett. A 245, 26–30 (1998) [e-Print: gr-qc/9805057]

    Google Scholar 

  21. See Appendix A: p. 478 of Ref. [17]

  22. Quiros, I., Garcia-Salcedo, R., Madriz Aguilar, J. E.: e-Print: arXiv:1108.2911

  23. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1923)

    MATH  Google Scholar 

  24. Pauli, W.: Theory of Relativity. Dover, New York (1981)

    Google Scholar 

  25. Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  26. Bouvier, P., Maeder, A.: Astrophys. Space Sci. 54, 497–508 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  27. Fatibene, L., Francaviglia, M.: e-Print: arXiv:1106.1961 (see also references [34] and [51])

  28. Gilkey, P., Nikcevic, S., Simon, U.: J. Geom. Phys. 61, 270–275 (2011) [e-Print: arXiv:1002.5027] (see also references [34] and [51])

    Google Scholar 

  29. Carroll, R.: e-Print: arXiv:0705.3921 (see also references [34] and [51])

  30. ORaiefeartaigh, L., Straumann, N.: Rev. Mod. Phys. 72, 1 (2000). (see also references [34] and [51])

    Article  ADS  Google Scholar 

  31. Folland, G.B.: J. Diff. Geom. 4, 145 (1970). (see also references [34] and [51])

    MathSciNet  MATH  Google Scholar 

  32. Thomas, T.V.: Proc. N. A. J. 12, 353 (1926) (see also references [34] and [51])

  33. Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: Int. J. Mod. Phys. A 26, 3721–3729 (2011) [e-Print: arXiv:1106.5543]; e-Print: arXiv:1201.1469

    Google Scholar 

  34. Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: e-Print: arXiv:1101.5333

  35. Dirac, P.A.M.: Naturwissenschaften 60, 529–531 (1973)

    Article  ADS  Google Scholar 

  36. Rosen, N.: Found. Phys. 12, 213–248 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  37. Cheng, H.: Phys. Rev. Lett. 61, 2182 (1988) e-Print: math-ph/0407010

  38. Wei, H., Cai, R.-G.: JCAP 0709, 015 (2007) [e-Print: astro-ph/0607064]

  39. Aluri, P.K., Jain, P., Mitra, S., Panda, S., Singh, N.K.: Mod. Phys. Lett. A 25, 1349–1364 (2010) [e-Print: arXiv:0909.1070]

  40. Jain, P., Mitra, S.: Mod. Phys. Lett. A 25, 167–177 (2010) [e-Print: arXiv:0903.1683]

  41. Aluri, P.K., Jain, P., Singh, N.K.: Mod. Phys. Lett. A 24, 1583–1595 (2009) [e-Print: arXiv:0810.4421]

  42. Jain, P., Mitra, S.: Mod. Phys. Lett. A 24, 2069–2079 (2009) [e-Print: arXiv:0902.2525]

  43. Rouhani, S., Takook, M.V., Tanhayi, M.R.: JHEP 1012, 044 (2010) [e-Print: arXiv:0903.2670]

  44. Fatemi, S., Rouhani, S., Takook, M.V., Tanhayi, M.R.: J. Math. Phys. 51, 032503 (2010) [e-Print: arXiv:0903.5249]

    Google Scholar 

  45. Moon, T., Oh, P., Sohn, J.: JCAP 1011, 005 (2010) [e-Print: arXiv:1002.2549]

  46. Moon, T.Y., Lee, J., Oh, P.: Mod. Phys. Lett. A 25, 3129–3143 (2010) [e-Print: arXiv:0912.0432]

  47. Israelit, M.: Gen. Relativ. Gravit. 43, 751–775 (2011) [e-Print: arXiv:1008.0767]

  48. Israelit, M.: Int. J. Mod. Phys. A 17, 4229–4237 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Israelit, M.: Found. Phys. 32, 945–961 (2002)

    Article  MathSciNet  Google Scholar 

  50. Punzi, R., Schuller, F.P., Wohlfarth, M.N.R.: Phys. Lett. B 670, 161–164 (2008) [e-Print: arXiv:0804.4067]

    Google Scholar 

  51. Miritzis, J.: Class. Quantum Grav. 21, 3043–3056 (2004) [e-Print: gr-qc/0402039]

  52. Novello, M., Perez Bergliaffa, S.E.: Phys. Rept. 463, 127–213 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  53. Novello, M., Oliveira, L.A.R., Salim, J.M., Elbaz, E.: Int. J. Mod. Phys. D 1, 641–677 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. See Appendix D: p. 445 of Ref. [55]

  55. Wald, R.M.: General Relativity. The University of Chicago Press, UK (1984)

    MATH  Google Scholar 

  56. Harrison, E.R.: Phys. Rev. D 6, 2077 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  57. Belinskii, V.A., Khalatnikov, I.M.: Sov. Phys. JETP 36, 531 (1973)

    MathSciNet  Google Scholar 

  58. Bekenstein, J.D.: Ann. Phys. 82, 535 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  59. Barrow, J.D., Maeda, K.: Nucl. Phys. B 341, 294 (1990)

    Article  ADS  Google Scholar 

  60. Abreu, J.P., Crawford, P., Mimoso, J.P.: Class. Quantum Grav. 11, 1919 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  61. Quiros, I.: Phys. Rev. D 61, 124026 (2000) [e-Print: gr-qc/9905071]

  62. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  63. Deser, S.: Ann. Phys. 59, 248–253 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  64. Shaukat, A., Waldron, A.: Nucl. Phys. B 829, 28–47 (2010) [e-Print: arXiv:0911.2477]

    Google Scholar 

  65. Gover, A.R., Shaukat, A., Waldron, A.: Phys. Lett. B 675, 93–97 (2009) [e-Print: arXiv:0812.3364]

    Google Scholar 

  66. Gover, A.R., Shaukat, A., Waldron, A.: Nucl. Phys. B 812, 424–455 (2009) [e-Print: arXiv:0810.2867]

    Google Scholar 

  67. Grigoriev, M., Waldron, A.: e-Print: arXiv:1104.4994

  68. Gover, A.R., Waldron, A.: e-Print: arXiv:1104.2991

  69. Bonezzi, R., Corradini, O., Waldron, A.: e-Print: arXiv:1003.3855

  70. Dabrowski, M.P., Denkiewicz, T., Blaschke, D.: Ann. Phys. (Leipzig) 17, 237–257 (2007)

    MathSciNet  ADS  Google Scholar 

  71. Poulis, F.P., Salim, J.M.: e-Print: arXiv:1106.3031

  72. Nandi, K.K., Bhattacharjee, B., Alam, S.M.K.: J. Evans. Phys. Rev. D 57, 823–828 [arXiv:0906.0181v1] (1998).

    Google Scholar 

  73. PhilipE, Bloomfield: Phys. Rev. D 59, 088501 (1999)

    Article  MathSciNet  Google Scholar 

  74. Nandi, K.K.: Phys. Rev. D 59, 088502 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  75. Dick, R.: Gen. Relativ. Gravit. 30, 435 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Faraoni, V., Gunzig, E.: Int. J. Theor. Phys. 38, 217–225 (1999) [e-Print: arXiv:astro-ph/9910176]

  77. Teyssandier, P., Tourrenc, P.: J. Math. Phys. 24, 2793 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Damour, T., Esposito-Farése, G.: Class. Quantum Grav. 9, 2093 (1992)

    Article  ADS  MATH  Google Scholar 

  79. Damour, T., Norvedt, K.: Phys. Rev. Lett. 70, 2217 (1993)

    Article  ADS  Google Scholar 

  80. Damour, T., Norvedt, K.: Phys. Rev. D 48, 3436 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  81. Bellucci, S., Faraoni, V., Babusci, D.: Phys. Lett. A 282, 357–361 (2001) [e-Print: arXiv:hep-th/0103180]

    Google Scholar 

  82. Jarv, L., Kuusk, P., Saal, M.: Phys. Rev. D 76, 103506 (2007) [e-Print: arXiv:0705.4644]

  83. Bhadra, A., Sarkar, K., Datta, D.P., Nandi, K.K.: Mod. Phys. Lett. A 22, 367–376 (2007) [e-Print: arXiv:gr-qc/0605109]

    Google Scholar 

  84. Nozari, K., Davood Sadatian, S.: Mod. Phys. Lett. A 24, 3143–3155 (2009) [e-Print: arXiv:0905.0241]

    Google Scholar 

  85. Dabrowski, M.P., Garecki, J., Blaschke, D.: Ann. der Phys. (Berlin) 18, 13–32 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. Alvarez, E., Conde, J.: Mod. Phys. Lett. A 22, 413–420 (2002) [e-Print: arXiv:gr-qc/0111031]

  87. Fujii, Y.: Prog. Theor. Phys. 118, 983–1018 (2007) [e-Print: arXiv:0712.1881]

  88. Carroll, S.M.: e-Print: gr-qc/9712019

  89. Quiros, I., Bonal, R., Cardenas, R.: Phys. Rev. D 62, 044042 (2000) [e-Print: gr-qc/9908075]

  90. Kaloper, N., Olive, K.A.: Phys. Rev. D 57, 811–822 (1998) [e-Print: hep-th/9708008]

    Google Scholar 

  91. Piao, Y.-S.: e-Print: arXiv:1112.3737

Download references

Acknowledgments

The authors thank Yun-Song Piao for pointing to us reference [91], which might serve as an additional illustration of our discussion on the singularity issue. This work was partly supported by CONACyT México under grants 49865-F and I0101/131/07 C-234/07 of the Instituto Avanzado de Cosmologia (IAC) collaboration (http://www.iac.edu.mx/), by the Department of Physics, DCI, Guanajuato University, Campus León, and by the Department of Mathematics, CUCEI, Guadalajara University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Quiros.

Appendices

Appendix A: General relativity gauge

General relativity can be obtained from (35) in a particular gauge when \({\bar{\varphi }}=\varphi _0\). In fact, after this choice, the solution of the equation in the RHS of Eq. (15) will be

$$\begin{aligned} \varphi -\varphi _0=2\ln \Omega \,\Rightarrow \,\Omega ^2=e^{\varphi -\varphi _0}. \end{aligned}$$

It can be shown that, under (7) with the latter choice of the conformal factor, the affine connection of a Weyl-integrable space maps to the Christoffel symbols of the conformal metric: \(\Gamma ^\alpha _{\beta \gamma }\rightarrow \{^{\bar{\alpha }}_{\beta \gamma }\}\), etc. In other words, WI spaces transform under (7)—with \(\Omega ^2=e^{\varphi -\varphi _0}\)—into Riemannian spaces. Besides, the action (35) transforms into the Einstein-Hilbert action,

$$\begin{aligned} S_{EH}=\frac{1}{16\pi G_{eff}}\int d^4x\sqrt{-{\bar{g}}}\,{\bar{R}}, \end{aligned}$$

where \(G_{eff}=e^{-\varphi _0}\) is the (rescaled) effective gravitational coupling. Hence GR is a particular gauge in the conformal equivalence class \(\mathcal{C }\) defined in Eq. (16). Going into this particular gauge means that conformal invariance becomes, automatically, into a broken symmetry.

Appendix B: Brans–Dicke theory with matter

Although for sake of simplicity we have considered in this paper only the vacuum sector of Brans–Dicke theory, several qualitative aspects of introducing matter into the theory can be discussed here. We will see that the results of the present work are not modified by the addition of ordinary matter into BD theory. We have seen, in particular, that considering the motion of test particles in vacuum BD theory already reveals several interesting features. For instance, assuming one adheres to the first viewpoint in Sect. 3.1, the test particles which follow geodesics of the JF metric do not fallow geodesics of the conformal EF metric. Hence, if one decides to interpret the results of a given analysis in the EF of BD theory, since deviations from geodesic motion are interpreted by the EF observers as due to the existence of additional interactions of non-gravitational origin between the test particle and the scalar field \(\varphi \), one will be faced with confronting the predictions of the theory with “five-force” experiments. The above analysis may be corroborated by adding matter into Brans–Dicke theory. The matter part of the JFBD gravity is assumed to be given by [1], \(S_m=\int d^4x\sqrt{-g}\mathcal{L }_m(\psi _i,g_{\mu \nu })\), where \(\mathcal{L }_m\) is the Lagrangian density of matter, and \(\psi _i\) represent the matter fields. The following continuity equation is obeyed in the JFBD theory:

$$\begin{aligned} \nabla ^\nu T^{(m)}_{\nu \mu }=0,\,T^{(m)}_{\mu \nu }=\frac{2}{\sqrt{-g}}\frac{\partial }{\partial g^{\mu \nu }}({\sqrt{-g}\,\mathcal{L }}_m), \end{aligned}$$
(42)

where \(T^{(m)}_{\mu \nu }\)—the matter stress-energy tensor. Under (7) with \(\Omega ^2=e^\varphi \)—in the sense implied by the first viewpoint in Sect. 3.1 (Eq. (24))—the JF matter action above is transformed into the EF one [2, 90], \({\bar{S}}_m=\int d^4x\sqrt{-{\bar{g}}}\,e^{-2\varphi }\bar{\mathcal{L }}_m({\bar{\psi }}_i,e^{-\varphi }{\bar{g}}_{\mu \nu })\), while (42) is mapped into

$$\begin{aligned} {\bar{\nabla }}^\nu {\bar{T}}^{(m)}_{\nu \mu }=-\frac{1}{2}{\bar{\partial }}_\mu \varphi \,{\bar{T}}_{(m)}, \end{aligned}$$
(43)

where we have considered that, under (7), \({\bar{T}}^{(m)}_{\mu \nu }=\Omega ^{-2}T^{(m)}_{\mu \nu }\), and \({\bar{T}}_{(m)}={\bar{g}}^{\mu \nu }{\bar{T}}^{(m)}_{\mu \nu }\) is the trace of the EF stress-energy tensor. Only for traceless (massless) matter fields the continuity Eq. (42) is not transformed by (7). Physically Eq. (43) means that in terms of the EFBD metric there is an additional (non-gravitational) interaction between matter and the scalar field (the five-force) so that these fields exchange energy-momentum. If one invokes instead the point of view of Sect. 3.2, \(\gamma _{RW}:(\mathcal{M },g_{\mu \nu })\mapsto (\mathcal{M },{\bar{g}}_{\mu \nu },\varphi )\), then the JF continuity Eq. (42) is mapped into

$$\begin{aligned} {\bar{\nabla }}^\nu _{(w)}{\bar{T}}^{(m)}_{\nu \mu }= -{\bar{\partial }}^\nu \varphi \,{\bar{T}}^{(m)}_{\nu \mu }, \end{aligned}$$
(44)

which is just the continuity equation in WI spaces. Although the term in the RHS of (44) might seem alien, it expresses the fact that the units of measure of the stresses and energy are running units. In no case the RHS of (44) can be interpreted as a source term. To show this notice that Eq. (44) is the trace of the most general equation, \({\bar{\nabla }}^{(w)}_\alpha {\bar{T}}^{(m)}_{\nu \mu }= -{\bar{\partial }}_\alpha \varphi \,{\bar{T}}^{(m)}_{\nu \mu }\), which is, in turn, the equivalent of the metricity condition (27)—with \(\Omega ^2=e^\varphi \)—in the matter sector of the EFBD theory. The opposite sign in the RHS of the above equation in respect to the sign of the RHS of Eq. (27) is a consequence of the fact that, increasing extent of the units of length and time is correlated with the contrary effect on the units of stresses and energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiros, I., García-Salcedo, R., Madriz-Aguilar, J.E. et al. The conformal transformation’s controversy: what are we missing?. Gen Relativ Gravit 45, 489–518 (2013). https://doi.org/10.1007/s10714-012-1484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1484-7

Keywords

Navigation